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Abstract:

Maps of species distribution are vital tools in conservation planning. The gathering of data on
species distribution is time and money consuming. Ecological niche modeling may usefully
serve as an alternative way of creating satisfactory maps of species distribution. Climatic
envelope models (CEMs) define the potential geographic range of a species by the totality of
sites with environmental conditions similar to those prevailing at the sites for which records of
that species are available. Even though these models are widely used in the literature only few
studies have been made on differences in their reliability. The present study compares three
different CEMs (BIOCLIM, Habitat and Mahalanobis), using data for a total of 66 species
representing three faunistic groups: bats, snails and birds. An independent dataset was created to
serve as a validation set.

There was no significant difference between the models in their ability to predict species
distribution. The ‘c’ (false absence) score was relatively very low, in all species. In general,
validation scores were similar to those found in previous studies. No significant difference was
found between the Fauna groups.

The Incidence of species showed a significant negative quadratic regression with Kappa,
reflecting the inherent bias of Kappa. The number of observations did not affect the ability of the
models to predict species distribution. This is probably because only species with over 25
observations in the calibrating dataset were used in our tests.

There is a difference between the BIOCLIM and Mahalanobis models in over predicting
false presence. BIOCLIM model over predicts false presence, its performance is enhanced by
eliminating from the calibrating dataset 10% of the outliers. The BIOCLIM best predicted the bat
dataset when all of the calibrating dataset was used. This is due to the low number of sites per

species in that specific dataset.
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Introduction

Maps of species distribution play an important role in applying conservation action plans
(Primack 1998). However, distribution maps are only as good as the data used to generate them.
As obtaining data on species distribution is both time and money consuming, many maps are
based only on limited data and reflect the subjective intuition of naturalists and researchers
(Shalmon 1993).

Models provide an alternative, objective and relatively inexpensive means of creating
species distribution maps. GIS (Geographical Information System) and modern statistical
methods enable us to predict distribution ranges using ecological niche models. These models
rely on niche theory (Hutchinson 1957), and interpolate species distribution patterns from point
records to their entire geographical range (Guisan & Zimmermann 2000).

Climatic Envelope Models (CEMs), define the potential geographic range of a species by
the totality of sites with environmental conditions similar to those prevailing in the sites at which
the species was recorded. Thus the potential range of a species is mapped into geographic space
by the set of climatic conditions at record-sites. Such models outline a climatic envelope (a
climatic niche), which covers the space created by mapping distribution in relation to selected
climatic variables. This approach assumes that species can persist where their climatic
requirements are satisfied. Over the past 20 years there has been a growing interest in such
CEMs. Several such models have been based on different definitions of the multi-dimensional
space (see summary by Guisan & Zimmerman 2000).

CEMs involve three conceptual steps (Hirzel et al. 2001). (1) The niche profile of a species
is computed by assigning each cell to a combination of the chosen climatic parameters. (2) Next,
the climatic data are used to compute the climatic envelope of the species. Models vary in the
manner in which the climatic envelope of the species is defined. The geometry of the border
represented by the climatic envelope, affects the manner in which the model interprets the
relations between climatic variables. (3) Identification of cells that satisfy the climatic
requirements of the species (i.e., the climatic envelope) on the map.

CEMs have been extensively used for conservation research (Honig et al. 1992; Sindel &
Michael 1992; Martin 1996; Skidmore et al. 1996; Pearce & Lindenmayer 1998). They have
proved particularly popular in attempts to predict responses of species distribution to climatic

changes (Brereton et al. 1995; Eeley et al. 1999; Crumpacker et al. 2001). Yet, little is known



about the predictive power of such models, or the degree to which model predictions depend on
the technique used to determine the climatic envelope (Guisan et al. 1998). This study compares
the performance of three climatic envelope models: 1) BIOCLIM (Busby 1991); 2) Habitat
(Walker & Cocks 1991) and 3) Mahalanobis (Farber & Kadmon 2003). Each model was applied
to data for three widely different groups of animals: (i) insectivorous bats, (i1) nesting land birds,
(i11) land snails. Predictions generated by the different models were evaluated using independent
validation data, obtained by extensive sampling. Four complementary measures of accuracy were
used to quantify accuracy of the predictive maps: Kappa, Sensitivity, Specificity and Overall

Accuracy (Fielding & Bell 1997).

The models

1) BIOCLIM

Originally developed by Busby (1986), the BIOCLIM algorithm (Nix 1986; Busby 1991) derives
the climatic range for each climatic variable. The model prediction is of Boolean
(presence/absence) nature. BIOCLIM computes the climatic envelope on the basis of the extreme
values of each climatic variable. The contour of the climatic envelope is of a rectilinear nature,
and so ignores correlations between climatic parameters (Figure 1) and usually predicts a large
potential niche. Removal of the outer ten percent of data often improves predictions (Honig et al.

1992; Law 1994). BIOCLIM is the most widely used CEM.

2) Habitat

The Habitat model Proposed by Walker and Cocks (1991), defines the potential niche as the
convex hull of the climatic data, assuming that the envelope borderline matches linear interaction
between climatic variables (Figure 1). Habitat differs from BIOCLIM in its ability to adjust the
border of the envelope to correspond to the distribution of the data points in the climatic space.
Consequently it predicts a smaller potential niche than BIOCLIM. As with BIOCLIM, the model

prediction is Boolean.



3) Mahalanobis

Introduced to bioclimatic modeling by Farber and Kadmon (2003), the Mahalanobis model

defines the climatic envelope of the species based on the Mahalanobis distance (Figure 1). It

differs from the two other models in two most important ways: (1) By explicitly coping with

correlations between the different variables. (2) By the fact that its borderline envelope is

calculated from all dataset points (Farber 2000).

In analyzing the performance of the various models, I asked the following questions:

How does the removal of outliers affect predictions?

To what extent does the number of observations available for calibrating the
model influence the accuracy of predictions?

Are there any differences in predictive accuracy between the three groups of
organisms?

Can niche-width of a species serve as a clue to the accuracy of the relevant
prediction?

Do rare species differ from common ones in the accuracy of their predictive

maps?
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Figure 1: Schematic illustration of the climatic envelopes defined by the three models evaluated in this

study. The grey area is the potential niche predicted by each model.



Methods

Databases used for model calibration.

Data on bat distribution were obtained from several sources including observations by
Menachem Dor (1930-1959); the bat database of the Israeli Mammalian Center of the Society for
the Protection of Nature in Israel (SPNI) (1980-2002); David Harrison (1894-1963); David
Harrison and Paul J. J. Bates (1866-1988); University of Tel Aviv Zoological collection (1931-
1996); Yohay Barak, M.Sc. (1986-1988); Yohay Carmel, M.Sc. (1990-1993); Rachel Feldman,
M.Sc.(1995-1997); and records of Carmi Korine from the Sde Boker area (1999-2001). Bird data
were obtained from The University of Tel Aviv Zoological collection and the Israel Nature and
Parks Authority. These data covered the years 1934-2002. The snail data were taken from the
Mollusc Section, National Collections of Natural History, The Hebrew University of Jerusalem
(collection period 1865-1998).

Previous studies have shown positive relationship between the amount of data and the
accuracy of model predictions (Stockwell & Peterson 2002). Therefore our analysis is confined
to species with at least 25 unique records and at least one observation in the validation dataset.
These criteria yield a total of 66 species: 13 microchiropteran, 30 resident nesting land birds and
23 land snails (see appendix).

The climatic parameters used in the CEMs were: (i) mean annual rainfall, (ii) mean daily
temperature of the hottest month (August), (iii) mean minimum temperature of the coldest month
(January). The map of annual rainfall was digitized from 475 meteorological stations and
corresponding isohyets (Kadmon & Heller 1998; Kadmon & Danin 1999). The mean
temperature variables were calculated by interpolation from temperature data of 38 climatic
stations (Kurtzman & Kadmon 1999).

The mahalanobis radius was tested in several sizes and was found that a mahalanobis radius size
of 4 gave the highest significant Kappa for the dataset in this work. This radius size was found to
best predict species distribution in Farber (2000) as well.

The bird and snail calibrating dataset used for the BIOCLIM model, excluded 10% outliers, for
best prediction. Bat calibrating dataset for the BIOCLIM model and all other models used in this

work, did not show a need to exclude outliers.



Validation data

I used an independent dataset for model validation, created by sampling the relevant fauna in 30
sampling sites of 1km? that were chosen to maximize representation of the climatic gradients of
the research area. The 30 sampling sites were selected in a stratified random manner, using GIS
technology (ESRI Inc. 1994). Each faunistic group was sampled in a matter that best fitted its
specific nature. The sampling sites for bats, birds and snails were selected from the set of 30
sites. Some of the sampling sites for bats, were not chosen from the set of 30 sites, because of
logistical and security considerations (e.g. the need to sample bats at night).

Bats were sampled in 19 sites; each site covering a 250m” was visited twice (two nights,
once during spring time and the other in late summer), to increase the probability of obtaining a
complete list of the species inhabiting that area. Bats were sampled during spring and summer
from one hour before sunset, until half an hour after sunrise, using mist nets (total of 50 m x 2.5
m), frequency division bat detectors (ANABAT I, Titley Electronics) with data loggers (Delay
switch, Titley Electronics), time expansion and heterodyne bat detectors (Petterson D-980 and
Petterson D-200, Pettersson Elektronik). The combination of mist nets and echolocation analysis
was intended to ensure the best possible representation of species at each site (O'Farrell &
Gannon 1999).

Live bats were identified by relevant handbooks-identifying live bats. Methods for live bat
identification were collected from the literature: (Koopman 1975; Makin 1977; Johnson 1980;
Qumsiyeh 1985; Palmeirim 1990; Harrison & Bates 1991; Shalmon 1993; Wardhaugh 1999;
Qumsiyeh 1996; Schober & Grimmberger 1997; Mendelssohn & Yom-Tov 1999; Taylor 2000).
Visits to the collections of the British Museum of Natural History, the Harrison Museum and the
Tel Aviv University Zoological Museum provided opportunities to check identifications. An
echolocation reference library of almost all bat species of Israel was created for this work. Based
on echolocation recordings collected in the course of my field work and on the available
literature: (Waters & Jones 1995; Barataud 1996; Herr et al. 1997; Tupinier 1997; Vaughan et al.
1997; O'Farrell & Gannon 1999; Russ 1999; Schnitzler & Denzinger 1999 personal
communication; Parsons & Jones 2000; Russo & Jones 2002; Limpens 2003) My own fieldwork
involved capture, identification, and recording at time of release.

Birds were sampled in 20 sites by D. Rotem (Rotem 2003). The sampling procedure at

each site was based on point counts (Bibby et al. 2000), gathered at five observation points



situated in a systematic array. Birds were sampled for 10 minutes at each point. Each site was
sampled twice during the main breeding season, from March till July inclusive.

Snails were sampled at 27 sites by O. Steinitz (Steinitz 2003). Sampling in each site
comprised collecting in nine quadrates of 100m?, situated in a systematic array. Species were

determined by their shells.

Accuracy assessment

In order to evaluate the accuracy of model predictions an error matrix for model assessment
(Table 1) was constructed for each predictive map. This provided the basis for the calculation of
four components: “a”, “b”, “c” and “d”, which correspond to the frequencies of cases which
represent the four possible outcomes of a comparison between a predictive map and the
validation dataset (Table 1). The four measures of accuracy calculated (Table 2) are: Kappa
(Cohen 1960), Sensitivity, Specificity, and Overall Accuracy (Legendre & Legendre 1998). The
Kappa statistic evaluates the accuracy of prediction relative to the accuracy that might have
resulted by chance alone (Cohen 1960; Monserud & Leemans 1992; Shao & Halpin 1995).
Sensitivity represents the probability that the model correctly predicts a presence, whereas
Specificity is the probability that the model correctly predicts an absence (Fielding & Bell 1997).
The advantage of the parameters of accuracy is that they do not depend on the prevalence of a
species. Overall Accuracy represents the correct prediction relative to all predictions made by the
model. This parameter tends to ascribe relatively high accuracy for rare species (Fielding & Bell

1997; Manel et al. 1999).

Data analysis

Differences in predictive accuracy (expressed by error matrix and validation parameters) among
the three models and the three fauna groups were tested using ANOVA, ANCOVA, and repeated
measures ANOVA (Zar, 1999).

Regression analysis was used to evaluate the effect of three species parameters on the accuracy
of model predictions: (1) Incidence (ACN); calculated as the relative validation sites, the species
was found in, (2) number of observations (OBS) and (3) niche-width (NW); calculated as the

relative range of all three climatic parameters.



Regressions were computed for each combination of models and fauna using three different
functions, linear, logistic and quadratic (Sokal & Rohlf 1995). For each combination of model
and fauna, the model showing the most significant fit was selected. If both linear and quadratic

fits were significant, the fit with the best P value and higher statistic was selected.



) Reality
Error matrix

Present Absent
E Present a b
S
=
A t
E bsen c d
Parameter Name Interpretation
Number of cells for which presence was correctly
a Correct presences _
predicted by the model.
Number of cells for which the species was not found,
b False presence ]
but the model predicted presence.
Number of cells for which the species was found, but
c False absence .
the model predicted absence.
Number of cells for which absence was correctly
d Correct absences

predicted by the model.

Table 1: Components of an error matrix. When a model map is compared to a map of actual
distribution, the results can be summarized in a 2x2 matrix. The variables in this matrix (i.e. a,b,c and d)
stand for the number of times each case occurred.

Kappa
(a+dj_ (a+b)a+c)+(c+d)b+d)
n n’
(- latrb)atc)t(ctd)b+d)
n2
Overall Accuracy Sensitivity Specificity
a+d a d
n a+tc b+d

Table 2: Measures of accuracy used in this study. Based on the 2x2 error matrix (Table 1), four measures
of accuracy were used. 'Overall Accuracy' is the rate of correctly classified cells. The Kappa, normalizes
this accuracy by the accuracy that might have occurred by chance alone. Sensitivity is the probability that
the model will correctly classify a presence, and Specificity is the probability that the model will correctly
classify an absence. In all formulas n=a+b+c+d.
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Results

Distribution of the validation sites

The geographic and climatic distribution of the sites used for validating the models, developed
for each faunistic group, are shown in figures 2-4. The distribution of the sites in the climatic
space is defined by three variables: mean daily temperature of August, mean minimum
temperature of January, and mean annual rainfall. The validation sites represent the entire range

of climatic conditions prevailing in the study area.
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Figure 2. Distribution of snail validation sites relative to climatic variables and the geographic
distribution of the sites. In green is the climatic combination present in the study area.
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Error matrix parameters

Combined effects of models and fauna

All error matrix parameters showed highly significant interactions between models and fauna
(Figure 5, Tables 3, 4). Without covariates, all parameters showed a significant difference among
the three models. The ‘b’ parameter showed a difference among the three fauna groups. The
Mahalanobis model was significantly different from the other two models by its low scores for
‘a’ and ‘b’ and high scores for ‘c’ and ‘d’ (Figure 5). The ‘¢’ parameter was very small compared
to the other parameters. Bats had a significantly high ‘b’ and low ‘d’. Addition of the covariates

NW, ACN and OBS did not make a substantial difference in the results.
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a b c d

Models 0.013 <0.001 0.021 0.001
Fauna 0.025
Model*Fauna <0.001 <0.001 <0.001 <0.001

Table 3. P values of repeated measures ANOVA testing the effects of models and fauna on error

matrix parameters. Bold values are statistically significant.

a b c d
Models 0.042 0.027
Fauna 0.001 0.001
Model*Fauna <0.001 <0.001 0.003 <0.001
Models*ACN 0.001 0.001
Models*NW
Models*OBS 0.008 0.022 0.009 0.047
ACN <0.001 <0.001 0.002
NW
OBS 0.007 0.001

Table 4. P values of repeated measures ANOVA testing the effects of models and fauna on error

matrix parameters, with ACN, NW, and OBS as covariates. Bold values are statistically significant.

Effect of fauna within models

In the BIOCLIM model, bats were significantly different from the other two fauna groups, by
their relatively high score of ‘b’ and low scores of ‘c’ and ‘d’ (Tables 5, 6). In the Habitat model
bats had a significantly higher ‘c’ than birds. The Mahalanobis model yielded no significant
difference between fauna groups. Addition of the covariates to the ANOVA caused the

difference between the fauna groups to be not significant.
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b c d
BIOCLIM <0.001 0.001 <0.001
Habitat 0.013
Mahalanobis

Table 5. P values of one-way ANOVA testing for differences in error matrix parameters among

fauna groups. A separate analysis was performed for each model. Bold values are statistically

significant
a b c d

Fauna

BIOCLIM ACN <0.001 <0.001 <0.001 0.009
NW 0.057 <0.001 0.057 <0.001
OBS 0.008 0.008
Fauna

Habitat ACN <0.001 <0.001 <0.001 <0.001
NW <0.001 <0.001
OBS 0.045 0.018 0.045 0.018
Fauna

Mahalanobis |ACN <0.001 <0.001 <0.001 <0.001
NW <0.001 <0.001
OBS

Table 6. P values of ANCOVA testing for differences in error matrix parameters among fauna

groups, with ACN, NW, and OBS as covariates. A separate analysis was performed for each model.

Bold values are statistically significant
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Effect of models within fauna

In all three faunistic groups there were significant differences in error matrix parameters between
the models (Tables 7, 8). The bats showed a pattern different from that of the birds or snails. In
bats, the BIOCLIM model showed significantly higher scores, than the other two models, for ‘a’
and ‘b’ and lower scores for ‘c’ and ‘d’. In birds, the Habitat model showed significantly higher
scores for ‘a’, ‘b’ and significantly lower scores for ‘c’ and ‘d’. The snails showed significant
differences for ‘a’ and ‘c’; where in ‘a’ the Habitat model was significantly higher then
BIOCLIM and in ‘c’ the Mahalanobis was higher than Habitat. With covariates added, only the
bat fauna in BIOCLIM showed significant differences between models resulting in a

significantly high score of ‘b’ and a significantly low score of ‘d’.

a b c d
Bats 0.001 <0.001 0.001 0.002
Birds 0.004 0.028 0.001 0.017
Snails 0.005 0.007 0.023

Table 7. P values of repeated measures ANOVA testing for differences in error matrix parameters
among models. A separate analysis was performed for each fauna. Bold values are statistically

significant.
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a b c d
Models <0.001 <0.001
Bats |Models*ACN 0.012 0.012
Models*NW 0.019 0.019
Models*OBS 0.031 0.031
ACN <0.001 0.004
NW
OBS 0.012
Models
Birds |Models*ACN <0.001 <0.001
Models*NW 0.017
Models*OBS
ACN <0.001 0.011 0.026 0.020
NW
OBS 0.050 0.037
Models 0.034 0.023
Snails | Models*ACN
Models*NW
Models*OBS
ACN <0.001 0.047
NW
OBS 0.019

Table 8. P values of repeated measures ANOVA testing for differences in error matrix parameters
among models, with ACN, NW, and OBS as covariates. A separate analysis was performed for each

fauna. Bold values are statistically significant.
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Effect of species parameters

Incidence (ACN): Owing to the way ACN is calculated (i.e., (a+c)/N), there was a strong

positive effect of ACN on the ‘a’ and ‘c’ parameters in all fauna groups (Table 9, Figures 6-9).
There was a strong negative effect of ACN on the ‘d’ parameter in all fauna groups. The ACN
did not show any consistent effect on the ‘b’ parameter. In bats it showed a negative effect, in
snails a positive one, while in birds it did not show any significant affect.

Niche-width (NW): Birds and snails showed a significant positive effect of NW on ‘a’. The

effect of NW on ‘b’ and ‘c’ was not consistent (Table 10, Figures 6-9). All fauna showed a
significant negative effect of NW on the ‘d’, this parameter had the highest coefficient of
determination (R?). In Birds all parameters showed a positive significant effect, except for the ‘d’
that had a negative one.

Number of Observations (OBS): For all fauna groups, there was a positive effect of OBS

on the ‘a’ parameter and a negative one on ‘d’ (Table 11, Figures 6-9). The corresponding effects
on ‘b’ and ‘c’ parameters were not consistent. In bats in the BIOCLIM model, only the ‘a’
parameter was significantly effected by OBS. The other two models showed significant effects
on, ‘a’, ‘c’ and ‘d’. In birds, most of the effects were statistically significant. In the BIOCLIM
model all parameters were significant, in Habitat only the ‘c’ parameter was not significant. In
the Mahalanobis model only the ‘b’ parameter was not significant. Snails showed a much clearer
pattern: in all models, the ‘b’ and ‘c’ parameters were not significant whereas in the Mahalanobis

model only the ‘d’ parameter was not significant.
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ACN

MODEL
Fauna | Validation | BJOCLIM | Mahalanobis | Habitat
parameters
a 0.994 lin (+) | 0.943 lin (+) | 0.951 lin (+)
b 0.390 log (-) | 0.369 log (-)
Bats
c 0.435 lin (+) | 0.392 log (+)
d 0.780lin(-) | 0.612lin(-)
a 0.961 lin (+) | 0.8851lin (+) | 0.973 lin (+)
b
Birds
c 0.405 log (+) | 0.658 lin (+)
d 0.597lin(-) | 0.6151lin(-) | 0.496 lin (-)
a 0.743 lin (+) | 0.845lin (+) | 0.782 lin (+)
b 0.403 qua (+) | 0.383 qua (+)
Snails
¢ 0.621 lin (+) | 0.734lin (+) | 0.421 qua (+)
d 0.758 lin(-) | 0.589 qua(-) | 0.562 lin (-)

Table 9. R? values of regression models testing the effect of ACN on error matrix parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of ACN. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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NwW

MODEL
Fauna | Validation | BIOCLIM | Mahalanobis | Habitat
parameters
a
b 0.431 qua (-
Bats qua )
c
d 0.600 log (-) | 0.4011in(-) | 0.368 lin (-)
a 0.472 lin (+) | 0.282 log (+) | 0.263 log (+)
b 0.334 lin (+) | 0.160 lin (+) | 0.364 lin (+)
Birds
c 0.176 lin (+) | 0.307 qua (+)
d 0.798 lin(-) | 0.5961in(-) | 0.706 lin (-)
a 0.263 log (+) | 0.450lin (+) | 0.590 lin (+)
b 0.231 lin (+)
Snails
c
d 0.4351lin(-) | 0.2801log (-) | 0.428 log (-)

Table 10. R? values of regression models testing the effect of NW on error matrix parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of NW. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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OBS

MODEL
Fauna |Validation BIOCLIM | Mahalanobis | Habitat
parameters
a 0.850 lin (+) | 0.728 lin (+) | 0.789 lin (+)
b
Bats
c 0.639 log (+) | 0.656 qua (-)
d 0.8321lin(-) | 0.8201in ()
a 0.554 1lin (+) | 0.428 log (+) | 0.537 lin (+)
b 0.182 log (+) 0.175 log (+)
Birds
c 0.138 lin (+) | 0.493 lin (+)
d 0.692 log (-) | 0.520log (-) | 0.676log (-)
a 0.606 lin (+) | 0.5391in (+) | 0.616 lin (+)
b
Snails
c
d 0.232 lin (-) 0.254 lin (-)

Table 11. R? values of regression models testing the effect of OBS on error matrix parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of OBS. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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in black, snails in blue.
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Measures of predictive accuracy

Combined effects of models and fauna

The Kappa statistic showed no significant difference between models or fauna. The interaction
between the two effects was also not significant. Adding the covariates did not have a significant
effect on these results (Figure 10, Tables 12, 13). Sensitivity showed a significant difference only
for the interaction. Both Overall Accuracy and Specificity showed that BIOCLIM had
significantly poorer performance than the other two models. Snails had significantly higher
Specificity scores than the other groups. Bats in BIOCLIM had significantly lower validation

scores than all other fauna and model groups. Adding covariates hardly affected the results.
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Kappa Overall | Sensitivity | Specificity
Accuracy
Models 0.002 <0.001
Fauna 0.008
Model*Fauna <0.001 <0.001 <0.001

validation parameters. Bold values are statistically significant.

Table 12. P values of repeated measures ANOVA testing the effects of models and fauna on

Kappa A(zzsf'zlcly Sensitivity | Specificity
Models
Fauna 0.014 0.001
Model * Fauna <0.001 <0.001 <0.001
Models*ACN 0.009
Models*NW
Models*OBS <0.001
ACN 0.003 0.001
NW 0.041 <0.001 <0.001
OBS 0.011

Table 13. P values of the repeated measures ANOVA testing the effects of models and fauna on
validation parameters, with ACN, OBS, and NW as covariates. Bold values are statistically

significant.

Effect of fauna within models

Only the BIOCLIM model showed significant differences between the fauna groups (Tables 14,
15). Kappa did not show a significant difference between models, between fauna, or their
interaction. It did not show any significant difference when the covariates were added. Bats in
BIOCLIM had a significantly higher score in Overall Accuracy and Sensitivity while a relatively
low score in Specificity. Adding covariates made the effect of fauna non significant in all

models.
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Kappa Overall Sensitivity | Specificity

Accuracy
BIOCLIM 0.001 0.008 <0.001
Habitat
Mahalanobis

Table 14. P values of one-way ANOVA testing for differences in validation parameters, among

fauna groups. A separate analysis was performed for each model. Bold values are statistically

significant.
Kappa A(zz::::lcly Sensitivity | Specificity

Fauna

BIOCLIM |ACN 0.001 <0.001 0.010
NW <0.001 <0.001 <0.001
OBS 0.006
Fauna

Habitat ACN 0.002 0.001 0.016
NwW <0.001 <0.001
OBS <0.001
Fauna

Mahalanobis| ACN 0.036
NW 0.042 0.002 0.001
OBS

Table 15. P values of ANCOVA testing for differences in validation parameters among fauna
groups, with ACN, OBS and NW as covariates. A separate analysis was performed for each model.

Bold values are statistically significant.
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Effect of models within fauna

Kappa and Overall Accuracy showed the lowest differences between models in all faunistic
groups (Tables 16, 17). The Kappa had no significant difference between fauna, nor did it show
any significant difference when the covariates were added. In bats the BIOCLIM model showed
a high score for Sensitivity and low scores for Specificity and Overall Accuracy. Birds showed a
different pattern; the Habitat model had a significantly low Specificity score and a significantly
high Sensitivity score. Snails showed a similar pattern as birds, except that the Mahalanobis
model in Specificity was not significantly different from the other models. Sensitivity in the
Mahalanobis was not significantly different from the Habitat model. Adding the covariates to the

test resulted in all models becoming not significantly different from each other.

Kappa Overall | Gepsitivity | Specificity
Accuracy
Bats 0.011 0.011 <0.001
Birds 0.039 <0.001
Snails 0.001 0.003

Table 16. P values of repeated measures ANOVA testing for differences in validation parameters
among models. A separate analysis was performed for each fauna. Bold values are statistically

significant.
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Kappa Overall Sensitivity | Specificity
Accuracy

Models
Models*ACN 0.007
Bats |Models*NW 0.017 0.049
Models*OBS 0.009
ACN 0.002 0.010 0.001
NwW 0.043 0.042
OBS 0.006 0.002

Models
Models*ACN 0.006
Birds | Models*NW 0.013
Models*OBS 0.015
ACN 0.002 0.002 0.012
NW <0.001 <0.001
OBS 0.047 0.002

Models
Models*ACN
Snails | Models*NW
Models*OBS
ACN 0.001
NW
OBS 0.034

Table 17. P values of repeated measures ANOVA testing for difference in validation parameters
among models, with ACN, NW and OBS as covariates. A separate analysis was performed for each

fauna. Bold values are statistically significant.
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Effect of species parameters

Incidence (ACN): ACN had a clear quadratic effect on Kappa in all fauna groups (Table

18, figures 11-14). The responses of the other parameters to variation in ACN were not
consistent.

Niche-width (NW): Birds showed a statistically significant effect of NW on all validation

parameters. The effect on Specificity and Overall Accuracy was negative, while that on
Sensitivity was not consistent (Table 19, figures 11-14). Snails hardly showed any significant
effect. Bats had a negative effect of NW on Specificity.

Number of Observations (OBS): The bat fauna in all models did not show any significant

effect of OBS on the validation parameters (Table 20, Figures 11-14). Snails showed no
consistent effects of OBS on all parameters. Birds, showed a significant negative effect of the

OBS on Overall Accuracy and Specificity.
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ACN

MODEL
Validation
Fauna BIOCLIM | Mahalanobis Habitat
parameters
Kappa 0.472 qua (-) | 0.546 qua (-)
Sensitivity 0.378 log (+)
Bats  |Specificity
Overall
0.402 log (+)
Accuracy
Kappa 0.267 qua (-)
Sensitivity
Birds (Specificity 0.158 lin (-) 0.142 lin (-)
Overall
Accuracy
Kappa 0.384 qau (-) | 0.434 qua(-) | 0.633 qua (-)
Sensitivity 0.440 log (-)
Snails |Specificity 0.314 qua (-) | 0.347 qua (-)
Overall
0.385qua(-) | 0.385 qua (-) | 0.443 qua (-)
Accuracy

Table 18. R? values of regression models testing the effect of ACN on validation parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of ACN. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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NwW

MODEL

Validation
Fauna BIOCLIM | Mahalanobis Habitat

parameters

Kappa 0.3951og (-) | 0.414 log (-)

Sensitivity
Bats  |Specificity 0.544 log (-) | 0.6201og(-) | 0.413 log (-)

Overall

0.546 qua (+)

Accuracy

Kappa 0.412 qua (-) | 0.422 qua (-)

Sensitivity 0.236 log (+) | 0.277 qua (-) | 0.249 qua (-)
Birds (Specificity 0.5931lin(-) | 0.4191lin(-) | 0.619lin(-)

Overall ) ) )

0.4381lin(-) | 0.3161lin(-) | 0.380 lin (-)

Accuracy

Kappa

Sensitivity 0.190 log (+)
Snails |Specificity 0.315 lin (-)

Overall )

0.198 lin (-)
Accuracy

Table 19. R? values of regression models testing the effect of NW on validation parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of NW. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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OBS

Fauna

Validation

parameters

BIOCLIM

MODEL

Mahalanobis

Habitat

Bats

Kappa

Sensitivity

Specificity

Overall

Accuracy

Birds

Kappa

Sensitivity

0.375 log (1)

0.231 log (+)

Specificity

0.477 lin (-)

0.133 lin (-)

0.474 Tin ()

Overall

Accuracy

0.288 log (-)

0.152 lin ()

0.138 log (-)

Snails

Kappa

0.241 log (+)

0.289 log (+)

Sensitivity

0.432 log (+)

Specificity

Overall

Accuracy

Table 20. R” values of regression models testing the effect of OBS on validation parameters.
Regression models were constructed using linear models as well as quadratic and logarithmic
transformations of OBS. The results given are those that showed the best fit. The sign indicates the

direction (positive or negative) of the effect.
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Discussion

A variety of Climatic Envelope Models (CEMs) have been proposed in the literature
(Guisan & Zimmerman 2000). Yet, very few studies have compared the accuracy of predictions
derived from different CEMs. In principle, the accuracy of CEMs depends on three factors: (1)
the accuracy of the dataset used for model calibration; (2) the accuracy of the climate dataset;
and (3) the algorithm used to determine the climatic envelope. By constraining the first two
factors, I was able to evaluate the effect of model algorithms on the accuracy of predictions
generated by such models (Figure 16). In general, little difference was found between the models
in their ability to correctly predict species distribution. Differences among fauna groups in
predictive accuracy were also not statistically significant in most cases. Those differences that
were found could be attributed to differences among species in properties such as incidence and

niche-width.

Models
The absolute low value of the ‘c’ parameter in all models reflects little errors in predicting that a
particular species will not be present where it really occurs (i.e., False present). By implication,
CEMs are expected to make bigger errors in over predicting presence than in under predicting
presence of a species. Previous works have found a similar pattern (Araujo & Williams 2000;
Robertson et al. 2003). The BIOCLIM model differed from the other two models by the need to
exclude 10% outliers from the dataset, in order for its prediction to be most accurate. This need
is explained by the way the niche envelope is created in the BIOCLIM model which, by creating
a rectangular niche envelope, over expects the presence of the species. This is reflected in
relatively high ‘a’, ‘b’ and low ‘c’, ‘d’. The Mahalanobis model, which creates elliptic niche
envelopes (Farber & Kadmon 2003), predicts a more restricted distribution of species, and has a
relatively high ‘c’, ‘d’ and low ‘a’, ‘b’. Predictions of the habitat model resemble those of
Mahalanobis, due to the convex hull shape of its envelope, which narrows the climatic envelope
of the species.

The effect of excluding 10% of the outliers by the BIOCLIM model is evident in the bird
and snail datasets. In bats the best predictions obtained with BIOCLIM were obtained without
excluding outliers. The reason for this is the low number of observations per species, in the bat

dataset (an average of 52.2 vs. 107.6 for snails and 175.8 for birds). Because of the low number
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of observations, the elimination of outliers as done in BIOCLIM, decreased the number of
observations tremendously and reduced the ability to accurately predict distribution ranges.
Indeed, previous studies have found that a minimum of 50 sites in the calibrating dataset was
needed for the BIOCLIM model to correctly predict distribution (McKenney et al. 1998;
Stockwell & Peterson 2002; Kadmon et al. 2003). The present result corresponds to their
findings.

Once the BIOCLIM-bats are excluded, there is little difference between models in their
ability to predict species distribution. Interestingly, works comparing CEMs with other types of
models, did not find a significant difference as well (Elith & Burgman 2001; Robertson et al.
2003). The Kappa parameter did not show any significant difference between the models. Once
species properties is added to the test, most of the differences between the models become non
significant, owing to their strong effect on the prediction of the model.

Earlier works on CEMs have resulted in similar validation results as obtained in this study
(Mean Kappa for: BIOCLIM = 0.37, Habitat = 0.42, Mahalanobis = 0.42). Farber and Kadmon
(2003) working on woody plants distribution in Israel, found the mean Kappa of the BIOCLIM
model to be 0.41 while that predicted by the Mahalanobis was 0.48. GLM modeling made by
Jaberg & Guisan (2001) on three species of bats found a Kappa of 0.27-0.63. Manel et al. (2001)
tested three different models (logistic regression, discriminate analysis and neural networks)

using data on river birds and got a mean Kappa of 0.15-0.36.

Fauna

Species properties, which depend on scale, patchiness and dispersal, constitute an important
impact on the ability of a model to correctly predict distribution (Wiens 2001). The species
analyzed in this work were chosen from three different systematic groups, differing in their
manner of dispersal and their provenance in field surveys. The easier it is to find a species in the
field, the more likely it would be included in the dataset, and so will have a bigger database,
unless specific surveys were conducted. Snails have short-range dispersal and are easy to detect
in the field, while, birds have long-range dispersal and are also easy to detect. Bats have long-
range dispersal but are relatively hard to detect in the field. Yet the three fauna groups showed
little difference in the ability of the models to correctly predict their distribution. Of the three
models, only BIOCLIM showed a difference between the groups. This is explained by the fact
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that in BIOCLIM-bats there was no exclusion of outliers and the dataset was incomplete
probably due to the fact that bats are hard to detect. This significant difference disappeared once
covariates were added to the test.

Unlike Pearce et al. (2001), there was no difference among fauna groups in the ability of
the models to correctly predict the species distribution. It seems that the bat fauna is the odd one
out of the three fauna groups; this is explained by the low number of observations per species in
the dataset. Bat fauna in the other two models did not cause any significant difference on the
performance of the models. BIOCLIM is sensitive to the number of sites because of its
rectilinear envelope algorithm. The difference is not caused solely because of the dataset quality
or the BIOCLIM algorithm, but the combination of the two; the low number of sites per species

and the sensitivity of the BIOCLIM model to this sort of bias.

Species properties

The ACN showed a strong effect on the ‘a’, ‘¢’ and ‘d” parameters. The positive effect on ‘a’ and
‘c’ is expected due to the way the ACN is calculated i.e., (a+c)/N. The ACN was found to
negatively effect the ‘d” parameter as well. This finding was expected as a by product of the high
correlation with the ‘a’ parameter. A negative quadratic effect of ACN was found on Kappa.
This effect is due to the manner in which Kappa is calculated (Figure 15).

OBS was found to positively effect the ‘a’ and negatively effect the ‘d’. This is due to the
high correlation between number of observations in each dataset and species rarity. Rare species
obviously have fewer observations in the dataset, and will have a high ‘d’ and low ‘a’. Unlike
earlier studies, in the present research Kappa did not show a significant affect, perhaps because
we adapted the minimum of 25 observations as a limit for modeling. In previous studies, Kappa
did not improve significantly when the number of observations in the calibrating dataset was
increased above 50 (McKenney et al. 1998; Stockwell & Peterson 2002; Kadmon et al. 2003).

NW was found to negatively effect ‘d’ and positively effect ‘a’. Because of the high
correlation between climatic range and geographic range in the study area (Farber 2000), most
species show a clear correlation between the geographic range and the width of their niche. NW
had a negative effect on Specificity. This indicates that CEM is able to better predict true

absence of a species, if that species has a narrow niche.
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When evaluating individual species prediction maps, it is obvious that species with specific

climatic restrictions are better predicted (Figure 17).

(a+d)_(a+b)(a+c)+(c+d)(b+d)
n? (ad ) — (bc )

n

| - (a+b)(a+c);2(c+d)(b+d) - ((ad)—(bc))+(%)(b+c)

Figure 15: The Kappa bias is better explained by the simplified Kappa algorithm (the equation on the right). Notice
that the more ‘a’ differs from ‘d’, the smaller the product of their multiplication. If ‘b’ and ‘c’ are constant the total
score of Kappa will be lowest when ‘a’ or ‘d’ are smallest relative to the other and highest when a=d.

Considerations in creating distribution maps
The prediction ability of CEMs is similar between different organisms.

When making a distribution map from CEMs, one must decide whether the model should
error towards an over predicting or under predicting species presence. In general, both types of
models will be equally accurate, the difference between them being in the emphasis of the error.
For example, if a researcher wishes to draw a risk assessment map of species distribution, he
would be wise to prefer the BIOCLIM model. If, on the other hand, a map is needed to assess
new potential areas to look for a certain species, Mahalanobis is appropriate (Figure 16). A
different approach to this matter is to change the mahalanobis radius or the BIOCLIM, Habitat
percentile range. An additional consideration is whether the prediction should include all the
calibrating dataset points. Habitat and BIOCLIM include in their predictions all the observations
used to calibrate them. Mahalanobis, on the other hand, does not. Its prediction size is relative to
the mahalanobis radius selected (Farber 2000). A minimum of 50 record sites per species is

essential for an accurate prediction.
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Figure 16: Differences in all three models in their prediction, relative to outliers removed from the calibrating dataset. Red dots
are the calibrating dataset, blue is the model prediction, and circles are the validation dataset (open circles: species not found,
circles with black dots: species found). Data taken from the snail fauna (Buliminus labrosus).
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Figure 17. Models predicting species distribution.

Two maps with high prediction of species distribution (Kappa = 1), (i) a map of Pipistrellus bodenheimeri (bat fauna), a
species inhabiting the desert climate zone. (ii) a map of Sphincterochila cariosa (snail fauna), a species inhabiting the
Mediterranean climate zone.

Two maps with low prediction of species distribution (Kappa =-0.21), (iii) a map of Rhinolophus hipposideros (bat fauna), a
species without a distinctive climatic distribution and rare. (iiii) a map of Emberiza striolata (bird fauna), a species found in
micro-habitats of cliffs and rocky grounds in the desert climate zone.

Red dots are the calibrating dataset, blue is the model prediction, and circles are the validation dataset (open circles:
species not found, circles with black dots: species found)

48



References

Araujo, M. B. & Williams, P. H. (2000) Selecting areas for species persistence using occurrence
data. Biological Conservation, 96, 331-345.

Barataud, M. (1996) The world of bats. Sittelle, Mens.

Bibby, C., Jones, M. & Marsden, S. (1998) Bird Survey. Expedition Advisory Center, London.

Brereton, R., Bennett, S. & Mansergh, L. (1995) Enhanced greenhouse climate change and its
potential effect of selected fauna of south-eastern australia: a trend analysis. Biological
Conservation, 72, 339-354.

Busby, J. R. (1991) BIOCLIM - A bioclimatic analysis and prediction system. Nature
Conservation (eds. C. R. Margules & M. P. Austin), pp. 64-68. CSIRO, Australia.

Cohen, J. (1960) A coefficient of agreement of nominal scales. Educational and Psychological
Measurement 20, 37-46.

Crumpacker, D. W., Box, E. O. & Hardin, E. D. (2001) Implications of climatic warming for
conservation of native trees and shrubs in Florida. Conservation Biology, 15, 1008-1020.

Eeley, H. A. C., Lawes, M. J. & Piper, S. E. (1999) The influence of climate change on the
distribution of indigenous forest in KwaZulu-Natal, South Africa. Journal of
Biogeography, 26, 595-617.

Elith, J. & Burgman, M. (2001) Predictions and their validation: rare plants in the Central
Highlands, Victoria, Australia. in: Predicting Species Occurrences: Issues of Accuracy and
Scale (eds. Scott J.M., Heglund P.J., M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A.
Wall & F. B. Samson), pp. 303-314. Island Press, Washington.

ESRI Inc. ARC/INFO. 7. 1994. Redlands, CA.

49



Farber, O. (2000) Analysis, application and enhancement of Bioclimatic models for the
prediction of species distribution. M.Sc. The Hebrew University of Jerusalem.

Farber, O. & Kadmon, R. (2003) Assessment of alternative approaches for bioclimatic modeling
with special emphasis on the Mahalanobis distance. Ecological Modelling, 160, 115-130.

Fielding, A. H. & Bell, J. F. (1997) A review of methods for the assessment of prediction errors
in conservation presence/absence models. Environmental Conservation, 24, 38-49.

Guisan, A., Theurillat, J. P. & Kienast, F. (1998) Predicting the potential distribution of plant
species in an Alpine environment. Journal of Vegetation Science, 9, 65-74.

Guisan, A. & Zimmermann, N. E. (2000) Predictive habitat distribution models in ecology.
Ecological Modelling, 135, 147-186.

Harrison, D. L. & Bates, P. J. J. (1991) The Mammals of Arabia. Harrison Zoological Museum,
Kent.

Herr, A., Nicholas, I. K. & Atkinson, J. S. Identification of bat echolocation calls using a
decision tree classification system. Complexity International 4. 1997.

Hirzel, A., Helfer, V. & Mtral, F. (2001) Assessing habitat-suitability models with a virtual
species. Ecological Modelling, 145, 111-121.

Honig, M. A., Cowling, R. M. & Richardson, D. M. (1992) The invasive potential of Australian
banksias in South African fynbos: A comparison of the reproductive potential of Banksia
ericifolia and Leucadendron laureolum. Australian Journal of Ecology, 17, 305-314.

Hutchinson, G. E. (1957) Concluding remarks. Cold Spring Harbor Symposium on Quantitative

Biology. 22, 415-427.

50



Jaberg, C. & Guisan, A. (2001) Modelling the distribution of bats in relation to landscape
structure in a temperate mountain environment. Journal of Applied Ecology, 38, 1169-
1181.

Kadmon, R. & Danin, A. (1999) Distribution of plant species in Israel in relation to spatial
variation in rainfall. Journal of Vegetation Science, 10, 421-432.

Kadmon, R., Farber, O. & Danin, A. (2003) A systematic analysis of factors affecting the
performance of climatic envelope models. Ecological Applications, 13, 853-867.

Kadmon, R. & Heller, J. (1998) Modelling faunal responses to climatic gradients with GIS: land
snails as a case study. Journal of Biogeography, 25, 527-539.

Koopman, K. F. (1975) Bats of the Sudan. Bulletin of the American Museum of Natural History,
154, 353-444.

Kurtzman, D. & Kadmon, R. (1999) Mapping of temperature variables in Israel: a comparison of
different interpolation methods. Climate Research, 13, 33-43.

Law, B. S. (1994) Climatic limitation of the southern distribution of the common
blossom bat Syconycteris australis in New South Wales. Australian Journal of Ecology,
19, 366-374.

Legendre, L. & Legendre, P. (1998) Numerical ecology. Elsevier, Amsterdam.

Limpens, H. J. G. A. The use of bat detectors in identification and survey of bats. 2003 (in
preparation).

Makin, D. (1977). The Distribution and Biology of Insectivorous Bats (Microchiroptera) of

Israel. M.Sc. Thesis. The Hebrew University of Jerusalem (in Hebrew).

51



Manel, S., Dias, J. M., Buckton, S. T. & Ormerod, S. J. (1999) Alternative methods for
predicting species distribution: an illustration with Himalayan river birds. Journal of
Applied Ecology, 36, 734-747.

Manel, S., Williams, H. C. & Ormerod, S. J. (2001) Evaluating presence-absence models in
ecology: the need to account for prevalence. Journal of Applied Ecology, 38, 921-931.

Martin, W. K. (1996) The current and potential distribution of the common Myna Acridotheres
tristis in Australia. Emu, 96, 166-173.

McKenney, D. W., Mackey, B. G., Bogart, J. P., McKee, J. E., Oldham, M. J. & Chek, A. (1998)
Bioclimatic and spatial analysis of Ontario reptiles and amphibians. Ecoscience, 5, 18-30.

Mendelssohn, H. & Yom-Tov, Y. (1999) Mammalia of Israel. The Israel Academy of Sciences
and Humanities, Jerusalem.

Monserud, R. A. & Leemans, R. (1992) Comparing global vegetation maps with the Kappa
statistic. Ecological Modelling, 62, 275-293.

Nix, H. A. (1986) A biogeographic analysis of Australian elapid snakes. Atlas of Elapid snakes
of Australia pp. 4-15. Australian Government Publications Service, Canberra.

O'Farrell, M. J. & Gannon, W. L. (1999) A comparison of acoustic versus capture techniques for
the inventory of bats. Journal of Mammalogy, 80, 24-30.

Palmeirim, J. (1990) Bats of Portugal: zoogeography and systematics. The University of Kansas,
Lawrence.

Parsons, S. & Jones, G. (2000) Acoustic identification of twelve species of echolocating bat by
discriminant function analysis and artificial neural networks. Journal of Experimental

Biology, 203, 2641-2656.

52



Pearce, J., Ferrier, S. & Scotts, D. (2001) An evaluation of the predictive performance of
distributional models for flora and fauna in north-east New South Wales. Journal of
Environmental Management, 62, 171-184.

Pearce, J. & Lindenmayer, D. (1998) Bioclimatic analysis to enhance reintroduction biology of
the endangered helmeted honeyeater (Lichenostomus melanops cassidix) in southeastern
Australia. Restoration Ecology, 6, 238-243.

Primack, R. B. (1998) Essentials of Conservation Biology. Sinauer Associates, Sunderland.

Qumsiyeh, M. B. (1985) The Bats of Egypt. Texas Tech University Press, Lubbock.

Qumsiyeh, M. B. (1996) Mammals of the Holy Land. Texas Tech University Press, Lubbock.

Robertson, M. P., Peter, C. L, Villet, M. H. & Ripley, B. S. (2003) Comparing models for
predicting species' potential distributions: a case study using correlative and mechanistic
predictive modelling techniques. Ecological Modelling, 164, 153-167.

Rotem, D. (2003) Predicting species distribution of land birds in Israel using logistic regression.
M.Sc. Thesis. The Hebrew University of Jerusalem (in preparation).

Russ, J. (1999) The Bats of Britain and Ireland. Alana Books, Shropshire.

Russo, D. & Jones, G. (2002) Identification of twenty-two bat species (Mammalia : Chiroptera)
from Italy by analysis of time-expanded recordings of echolocation calls. Journal of
Zoology, 258, 91-103.

Schober, W. & Grimmberger, E. (1997) The Bats of Europe and North America. T.F.H.
Publications.

Shalmon, B. (1993) A Field Guide to the Land Mammals of Israel: their tracks and signs. Keter,

Jerusalem (in Hebrew).

53



Shao, G. F. & Halpin, P. N. (1995) Climatic controls of eastern north American coastal tree and
shrub distributions. Journal of Biogeography, 22, 1083-10809.

Sindel, B. M. & Michael, P. W. (1992) Spread and potential distribution of Senecio
madagascariensis Poir. (fire weed) in Australia. Australian Journal of Ecology, 21-26.

Skidmore, A. K., Gauld, A. & Walker, P. A. (1996) Classification of kangaroo habitat
distribution using three GIS models. Int.Journal of GIS, 10, 441-454.

Sokal, R. R. & Rohlf, F. J. (1995) Biometry. W.H. Freeman, New York.

Steinitz, O. (2003) Predicting patterns of species similarity using environmental and
geographical distances. M.Sc. Thesis. The Hebrew University of Jerusalem.

Stockwell, D. R. B. & Peterson, A. T. (2002) Effects of sample size on accuracy of species
distribution models. Ecological Modelling, 148, 1-13.

Taylor, P. J. (2000) Bats of southern Africa. University of Natal Press, Pietermaritzburg.

Tupinier, Y. (1997) European Bats: their world of sound. Sittelle, Lyon.

Vaughan, N., Jones, G. & Harris, S. (1997) Habitat use by bats (Chiroptera) assessed by means
of a broad- band acoustic method. Journal of Applied Ecology, 34, 716-730.

Walker, P. A. & Cocks, K. D. (1991) HABITAT: a procedure for modelling a disjoint
environmental envelope for a plant or animal species. Global Ecology and Biogeography
Letters, 1, 108-118.

Wardhaugh, A. A. (1999) Bats of the British Isles. Shire natural history. Buckinghamshire.

Waters, D. A. & Jones, G. (1995) Echolocation call structure and intensity in 5 species of
insectivorous bats. Journal of Experimental Biology, 198, 475-489.

Wiens, J. A. (2001) Predicting species occurrences: progress, problems and prospects. in:

Predicting Species Occurrences: Issues of Accuracy and Scale (eds. Scott J.M., Heglund

54



P.J., M. L. Morrison, J. B. Haufler, M. G. Raphael, W. A. Wall & F. B. Samson), Island
Press, Washington.

Zar, J. H. (1999) Biostatistical Analysis. Prentice Hall, New Jersey.

55



Appendix — Species used in this work

Bat fauna

Snail fauna

Species name OBS | NW |ACN | Fauna
Asellia tridens 37 [0.76]0.11 | Bats
Eptesicus bottae 38 10.35]0.26 | Bats
Myotis nattereri 26 10.69]0.05| Bats
Otonycteris hemprichi 25 10.4810.21 | Bats
Pipistrellus bodenheimeri 36 [0.33]0.26 | Bats
Pipistrellus kuhli 146 10.92|0.89 | Bats
Plecotus austriacus 34 [0.92]0.21 | Bats
Rhinolophus ferrumequinum 68 ]0.68]0.42 | Bats
Rhinolophus hipposideros 49 [0.61]0.11 | Bats
Rhinopoma hardwickei 71 [0.59]0.32 | Bats
Rhinopoma microphyllum 33 [0.50]0.16 | Bats
Tadarida teniotis 91 [0.71]0.63 | Bats
Taphozous nudiventris 25 10.54]0.21 | Bats
Species name OBS | NW |ACN | Fauna
Buliminus glabratus 28 [0.2410.07 | Snail
Buliminus labrosus 181 |1 0.51 [ 0.26 | Snail
Buliminus therinus 72 [0.37]0.04 | Snail
Eopolita protensa 110 | 0.61 | 0.41 | Snail
Euchondrus albulus 81 |0.41(0.26 | Snail
Euchondrus chondriformis 50 10.29(0.22 | Snail
Euchondrus saulcyi 52 10.54]0.15 | Snail
Euchondrus septemdentatus 189 |0.89 | 0.41 | Snail
Granopupa granum 36 [0.42]0.56 | Snail
Levantina caesareana 202 [0.87]0.44 | Snail
Levantina hierosolyma 164 |0.75] 0.41 | Snail
Metafruticicola fourousi 47 10.4910.22 | Snail
Monacha haifaensis 185 10.61 [ 0.44 | Snail
Paramastus episomus 91 [0.58]0.22 | Snail
Pene sidoniensis 125 10.65( 0.26 | Snail
Rupestrella rhodia 34 10.53]0.11 | Snail
Sphincterochila cariosa 78 [0.70]0.37 | Snail
Sphincterochila fimbriata 116 10.52 [ 0.07 | Snail
Sphincterochila prophetarum 85 [0.51[0.26 | Snail
Sphincterochila zonata 131 | 0.41]0.30 | Snail
Trochoidea langloisiana 61 [0.50]0.04 | Snail
Trochoidea tuberculosa 66 [0.43]0.07 | Snail
(Xeropicta vestalis 292 10.79] 0.48 | Snail
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Bird fauna

Species name OBS | NW |ACN | Fauna
Alectoris chukar 914 (0.98 | 0.81 | Birds
Ammomanes deserti 159 10.52 | 0.43 | Birds
Ammoperdix heyi 222 10.5410.33 | Birds
Anthus similis 29 [0.8610.19 | Birds
Athene noctua 307 10.80 [ 0.05 | Birds
Cercomela melanura 202 10.52 | 0.14 | Birds
Cisticola juncidis 39 [0.61]0.14 | Birds
Columba livia 148 10.93 | 0.43 | Birds
Corvus corone 338 [0.71 | 0.38 | Birds
Corvus rhipidurus 63 [0.39]0.10 | Birds
Corvus ruficollis 211 10.50 | 0.29 | Birds
Dendrocopos syriacus 204 10.79 | 0.33 | Birds
Emberiza striolata 25 10.39]0.14 | Birds
Francolinus francolinus 90 ]10.57]0.05 | Birds
Galerida cristata 374 (0.93 | 0.48 | Birds
Garrulus glandarius 366 10.90 [ 0.29 | Birds
Nectarinia osea 237 10.77 | 0.48 | Birds
Oenanthe leucopyga 82 10.49(0.10 | Birds
Parus lugubris 25 [0.41]0.05 | Birds
Parus major 248 10.77 | 0.48 | Birds
Passer domesticus 295 11.00 | 0.19 | Birds
Prinia gracilis 320 10.78 [ 0.33 | Birds
Pterocles coronatus 65 10.4210.05 | Birds
Pycnonotus xanthopygos 552 [0.79( 0.57 | Birds
Scotocerca inquieta 120 10.76 | 0.33 | Birds
Sitta neumayer 25 10.661 0.05 | Birds
Streptopelia decaocto 263 10.7410.71 | Birds
Streptopelia senegalensis 198 10.90| 0.10 | Birds
Strix butleri 46 [0.51]0.05 | Birds
Turdoides squamiceps 118 10.49 | 0.05 | Birds
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