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Abstract: 
Maps of species distribution are vital tools in conservation planning. The gathering of data on 

species distribution is time and money consuming. Ecological niche modeling may usefully 

serve as an alternative way of creating satisfactory maps of species distribution. Climatic 

envelope models (CEMs) define the potential geographic range of a species by the totality of 

sites with environmental conditions similar to those prevailing at the sites for which records of 

that species are available. Even though these models are widely used in the literature only few 

studies have been made on differences in their reliability. The present study compares three 

different CEMs (BIOCLIM, Habitat and Mahalanobis), using data for a total of 66 species 

representing three faunistic groups: bats, snails and birds. An independent dataset was created to 

serve as a validation set. 

There was no significant difference between the models in their ability to predict species 

distribution. The ‘c’ (false absence) score was relatively very low, in all species. In general, 

validation scores were similar to those found in previous studies. No significant difference was 

found between the Fauna groups. 

The Incidence of species showed a significant negative quadratic regression with Kappa, 

reflecting the inherent bias of Kappa. The number of observations did not affect the ability of the 

models to predict species distribution. This is probably because only species with over 25 

observations in the calibrating dataset were used in our tests. 

There is a difference between the BIOCLIM and Mahalanobis models in over predicting 

false presence. BIOCLIM model over predicts false presence, its performance is enhanced by 

eliminating from the calibrating dataset 10% of the outliers. The BIOCLIM best predicted the bat 

dataset when all of the calibrating dataset was used. This is due to the low number of sites per 

species in that specific dataset. 
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Introduction 

Maps of species distribution play an important role in applying conservation action plans 

(Primack 1998). However, distribution maps are only as good as the data used to generate them. 

As obtaining data on species distribution is both time and money consuming, many maps are 

based only on limited data and reflect the subjective intuition of naturalists and researchers 

(Shalmon 1993).  

Models provide an alternative, objective and relatively inexpensive means of creating 

species distribution maps. GIS (Geographical Information System) and modern statistical 

methods enable us to predict distribution ranges using ecological niche models. These models 

rely on niche theory (Hutchinson 1957), and interpolate species distribution patterns from point 

records to their entire geographical range (Guisan & Zimmermann 2000).  

Climatic Envelope Models (CEMs), define the potential geographic range of a species by 

the totality of sites with environmental conditions similar to those prevailing in the sites at which 

the species was recorded. Thus the potential range of a species is mapped into geographic space 

by the set of climatic conditions at record-sites. Such models outline a climatic envelope (a 

climatic niche), which covers the space created by mapping distribution in relation to selected 

climatic variables. This approach assumes that species can persist where their climatic 

requirements are satisfied. Over the past 20 years there has been a growing interest in such 

CEMs. Several such models have been based on different definitions of the multi-dimensional 

space (see summary by Guisan & Zimmerman 2000).  

CEMs involve three conceptual steps (Hirzel et al. 2001). (1) The niche profile of a species 

is computed by assigning each cell to a combination of the chosen climatic parameters. (2) Next, 

the climatic data are used to compute the climatic envelope of the species. Models vary in the 

manner in which the climatic envelope of the species is defined. The geometry of the border 

represented by the climatic envelope, affects the manner in which the model interprets the 

relations between climatic variables. (3) Identification of cells that satisfy the climatic 

requirements of the species (i.e., the climatic envelope) on the map.  

CEMs have been extensively used for conservation research (Honig et al. 1992; Sindel & 

Michael 1992; Martin 1996; Skidmore et al. 1996; Pearce & Lindenmayer 1998). They have 

proved particularly popular in attempts to predict responses of species distribution to climatic 

changes (Brereton et al. 1995; Eeley et al. 1999; Crumpacker et al. 2001). Yet, little is known 
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about the predictive power of such models, or the degree to which model predictions depend on 

the technique used to determine the climatic envelope (Guisan et al. 1998). This study compares 

the performance of three climatic envelope models: 1) BIOCLIM (Busby 1991); 2) Habitat 

(Walker & Cocks 1991) and 3) Mahalanobis (Farber & Kadmon 2003). Each model was applied 

to data for three widely different groups of animals: (i) insectivorous bats, (ii) nesting land birds, 

(iii) land snails. Predictions generated by the different models were evaluated using independent 

validation data, obtained by extensive sampling. Four complementary measures of accuracy were 

used to quantify accuracy of the predictive maps: Kappa, Sensitivity, Specificity and Overall 

Accuracy (Fielding & Bell 1997). 

 

The models 

1) BIOCLIM

Originally developed by Busby (1986), the BIOCLIM algorithm (Nix 1986; Busby 1991) derives 

the climatic range for each climatic variable. The model prediction is of Boolean 

(presence/absence) nature. BIOCLIM computes the climatic envelope on the basis of the extreme 

values of each climatic variable. The contour of the climatic envelope is of a rectilinear nature, 

and so ignores correlations between climatic parameters (Figure 1) and usually predicts a large 

potential niche. Removal of the outer ten percent of data often improves predictions (Honig et al. 

1992; Law 1994). BIOCLIM is the most widely used CEM. 

 

2) Habitat

The Habitat model Proposed by Walker and Cocks (1991), defines the potential niche as the 

convex hull of the climatic data, assuming that the envelope borderline matches linear interaction 

between climatic variables (Figure 1). Habitat differs from BIOCLIM in its ability to adjust the 

border of the envelope to correspond to the distribution of the data points in the climatic space. 

Consequently it predicts a smaller potential niche than BIOCLIM. As with BIOCLIM, the model 

prediction is Boolean. 
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3) Mahalanobis

Introduced to bioclimatic modeling by Farber and Kadmon (2003), the Mahalanobis model 

defines the climatic envelope of the species based on the Mahalanobis distance (Figure 1). It 

differs from the two other models in two most important ways: (1) By explicitly coping with 

correlations between the different variables. (2) By the fact that its borderline envelope is 

calculated from all dataset points (Farber 2000). 

 

In analyzing the performance of the various models, I asked the following questions: 

• How does the removal of outliers affect predictions? 

• To what extent does the number of observations available for calibrating the 

model influence the accuracy of predictions? 

• Are there any differences in predictive accuracy between the three groups of 

organisms? 

• Can niche-width of a species serve as a clue to the accuracy of the relevant 

prediction?  

• Do rare species differ from common ones in the accuracy of their predictive 

maps? 

 



5

Climatic data of species records from the 
calibration dataset 

Figure 1: Schematic illustration of the climatic envelopes defined by the three models evaluated in this 

study. The grey area is the potential niche predicted by each model. 
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Methods 

Databases used for model calibration. 

Data on bat distribution were obtained from several sources including observations by 

Menachem Dor (1930-1959); the bat database of the Israeli Mammalian Center of the Society for 

the Protection of Nature in Israel (SPNI) (1980-2002); David Harrison (1894-1963); David 

Harrison and Paul J. J. Bates (1866-1988); University of Tel Aviv Zoological collection (1931-

1996); Yohay Barak, M.Sc. (1986-1988); Yohay Carmel, M.Sc. (1990-1993); Rachel Feldman, 

M.Sc.(1995-1997); and records of Carmi Korine from the Sde Boker area (1999-2001). Bird data 

were obtained from The University of Tel Aviv Zoological collection and the Israel Nature and 

Parks Authority. These data covered the years 1934-2002. The snail data were taken from the 

Mollusc Section, National Collections of Natural History, The Hebrew University of Jerusalem 

(collection period 1865-1998). 

Previous studies have shown positive relationship between the amount of data and the 

accuracy of model predictions (Stockwell & Peterson 2002). Therefore our analysis is confined 

to species with at least 25 unique records and at least one observation in the validation dataset. 

These criteria yield a total of 66 species: 13 microchiropteran, 30 resident nesting land birds and 

23 land snails (see appendix). 

The climatic parameters used in the CEMs were: (i) mean annual rainfall, (ii) mean daily 

temperature of the hottest month (August), (iii) mean minimum temperature of the coldest month 

(January). The map of annual rainfall was digitized from 475 meteorological stations and 

corresponding isohyets (Kadmon & Heller 1998; Kadmon & Danin 1999). The mean 

temperature variables were calculated by interpolation from temperature data of 38 climatic 

stations (Kurtzman & Kadmon 1999).  

The mahalanobis radius was tested in several sizes and was found that a mahalanobis radius size 

of 4 gave the highest significant Kappa for the dataset in this work. This radius size was found to 

best predict species distribution in Farber (2000) as well. 

The bird and snail calibrating dataset used for the BIOCLIM model, excluded 10% outliers, for 

best prediction. Bat calibrating dataset for the BIOCLIM model and all other models used in this 

work, did not show a need to exclude outliers. 
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Validation data 

I used an independent dataset for model validation, created by sampling the relevant fauna in 30 

sampling sites of 1km2 that were chosen to maximize representation of the climatic gradients of 

the research area. The 30 sampling sites were selected in a stratified random manner, using GIS 

technology (ESRI Inc. 1994). Each faunistic group was sampled in a matter that best fitted its 

specific nature. The sampling sites for bats, birds and snails were selected from the set of 30 

sites. Some of the sampling sites for bats, were not chosen from the set of 30 sites, because of 

logistical and security considerations (e.g. the need to sample bats at night). 

Bats were sampled in 19 sites; each site covering a 250m2 was visited twice (two nights, 

once during spring time and the other in late summer), to increase the probability of obtaining a 

complete list of the species inhabiting that area. Bats were sampled during spring and summer 

from one hour before sunset, until half an hour after sunrise, using mist nets (total of 50 m x 2.5 

m), frequency division bat detectors (ANABAT II, Titley Electronics) with data loggers (Delay 

switch, Titley Electronics), time expansion and heterodyne bat detectors (Petterson D-980 and 

Petterson D-200, Pettersson Elektronik). The combination of mist nets and echolocation analysis 

was intended to ensure the best possible representation of species at each site (O'Farrell & 

Gannon 1999).  

Live bats were identified by relevant handbooks-identifying live bats. Methods for live bat 

identification were collected from the literature: (Koopman 1975; Makin 1977; Johnson 1980; 

Qumsiyeh 1985; Palmeirim 1990; Harrison & Bates 1991; Shalmon 1993; Wardhaugh 1999; 

Qumsiyeh 1996; Schober & Grimmberger 1997; Mendelssohn & Yom-Tov 1999; Taylor 2000). 

Visits to the collections of the British Museum of Natural History, the Harrison Museum and the 

Tel Aviv University Zoological Museum provided opportunities to check identifications. An 

echolocation reference library of almost all bat species of Israel was created for this work. Based 

on echolocation recordings collected in the course of my field work and on the available 

literature: (Waters & Jones 1995; Barataud 1996; Herr et al. 1997; Tupinier 1997; Vaughan et al. 

1997; O'Farrell & Gannon 1999; Russ 1999; Schnitzler & Denzinger 1999 personal 

communication; Parsons & Jones 2000; Russo & Jones 2002; Limpens 2003) My own fieldwork 

involved capture, identification, and recording at time of release. 

Birds were sampled in 20 sites by D. Rotem (Rotem 2003). The sampling procedure at 

each site was based on point counts (Bibby et al. 2000), gathered at five observation points 
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situated in a systematic array. Birds were sampled for 10 minutes at each point. Each site was 

sampled twice during the main breeding season, from March till July inclusive. 

Snails were sampled at 27 sites by O. Steinitz (Steinitz 2003). Sampling in each site 

comprised collecting in nine quadrates of 100m2, situated in a systematic array. Species were 

determined by their shells. 

 

Accuracy assessment 

In order to evaluate the accuracy of model predictions an error matrix for model assessment 

(Table 1) was constructed for each predictive map. This provided the basis for the calculation of 

four components: “a”, “b”, “c” and “d”, which correspond to the frequencies of cases which 

represent the four possible outcomes of a comparison between a predictive map and the 

validation dataset (Table 1). The four measures of accuracy calculated (Table 2) are: Kappa 

(Cohen 1960), Sensitivity, Specificity, and Overall Accuracy (Legendre & Legendre 1998). The 

Kappa statistic evaluates the accuracy of prediction relative to the accuracy that might have 

resulted by chance alone (Cohen 1960; Monserud & Leemans 1992; Shao & Halpin 1995). 

Sensitivity represents the probability that the model correctly predicts a presence, whereas 

Specificity is the probability that the model correctly predicts an absence (Fielding & Bell 1997). 

The advantage of the parameters of accuracy is that they do not depend on the prevalence of a 

species. Overall Accuracy represents the correct prediction relative to all predictions made by the 

model. This parameter tends to ascribe relatively high accuracy for rare species (Fielding & Bell 

1997; Manel et al. 1999). 

 

Data analysis 

Differences in predictive accuracy (expressed by error matrix and validation parameters) among 

the three models and the three fauna groups were tested using ANOVA, ANCOVA, and repeated 

measures ANOVA (Zar, 1999). 

Regression analysis was used to evaluate the effect of three species parameters on the accuracy 

of model predictions: (1) Incidence (ACN); calculated as the relative validation sites, the species 

was found in, (2) number of observations (OBS) and (3) niche-width (NW); calculated as the 

relative range of all three climatic parameters.  
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Regressions were computed for each combination of models and fauna using three different 

functions, linear, logistic and quadratic (Sokal & Rohlf 1995). For each combination of model 

and fauna, the model showing the most significant fit was selected. If both linear and quadratic 

fits were significant, the fit with the best P value and higher statistic was selected. 
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Table 1: Components of an error matrix. When a model map is compared to a map of actual 
distribution, the results can be summarized in a 2x2 matrix. The variables in this matrix (i.e. a,b,c and d)  
stand for the number of times each case occurred. 

Parameter Name Interpretation 

a Correct presences 
Number of cells for which presence was correctly 

predicted by the model. 

b False presence 
Number of cells for which the species was not found, 

but the model predicted presence. 

c False absence 
Number of cells for which the species was found, but 

the model predicted absence. 

d Correct absences 
Number of cells for which absence was correctly 

predicted by the model. 
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Table 2: Measures of accuracy used in this study. Based on the 2x2 error matrix (Table 1), four measures 
of accuracy were used.  'Overall Accuracy' is the rate of correctly classified cells. The Kappa, normalizes 
this accuracy by the accuracy that might have occurred by chance alone. Sensitivity is the probability that 
the model will correctly classify a presence, and Specificity is the probability that the model will correctly 
classify an absence. In all formulas n=a+b+c+d. 
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Results 

Distribution of the validation sites 

The geographic and climatic distribution of the sites used for validating the models, developed 

for each faunistic group, are shown in figures 2-4. The distribution of the sites in the climatic 

space is defined by three variables: mean daily temperature of August, mean minimum 

temperature of January, and mean annual rainfall. The validation sites represent the entire range 

of climatic conditions prevailing in the study area. 
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Figure 2. Distribution of snail validation sites relative to climatic variables and the geographic 
distribution of the sites. In green is the climatic combination present in the study area. 
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Figure 3. Distribution of the bat validation sites relative to climatic variables and the geographic 
distribution of the sites. In green is the climatic combination present in the study area. 
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Figure 4. Distribution of the bird validation sites relative to climatic variables and the geographic 
distribution of the sites. In green is the climatic combination present in the study area. 
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Error matrix parameters 

Combined effects of models and fauna

All error matrix parameters showed highly significant interactions between models and fauna 

(Figure 5, Tables 3, 4). Without covariates, all parameters showed a significant difference among 

the three models. The ‘b’ parameter showed a difference among the three fauna groups. The 

Mahalanobis model was significantly different from the other two models by its low scores for 

‘a’ and ‘b’ and high scores for ‘c’ and ‘d’ (Figure 5). The ‘c’ parameter was very small compared 

to the other parameters. Bats had a significantly high ‘b’ and low ‘d’. Addition of the covariates 

NW, ACN and OBS did not make a substantial difference in the results. 
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Figure 5: Error bars of error matrix parameters (Mean ± S.D.). Letters represent the different 
significant groups. 
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Effect of fauna within models

In the BIOCLIM model, bats were significantly different from the other two fauna groups, by 

their relatively high score of ‘b’ and low scores of ‘c’ and ‘d’ (Tables 5, 6). In the Habitat model 

bats had a significantly higher ‘c’ than birds. The Mahalanobis model yielded no significant 

difference between fauna groups. Addition of the covariates to the ANOVA caused the 

difference between the fauna groups to be not significant. 

 

Table 3. P values of repeated measures ANOVA testing the effects of models and fauna on error 

matrix parameters. Bold values are statistically significant. 

a b c d

Models  0.013 < 0.001  0.021  0.001 

Fauna  0.694  0.025  0.321  0.660 

Model*Fauna < 0.001 < 0.001 < 0.001 < 0.001 

Table 4. P values of repeated measures ANOVA testing the effects of models and fauna on error 

matrix parameters, with ACN, NW, and OBS as covariates. Bold values are statistically significant.

a b c d

Models  0.087  0.042  0.091  0.027 

Fauna  0.403  0.001  0.077  0.001 

Model*Fauna < 0.001 < 0.001  0.003 < 0.001 

Models*ACN  0.001  0.468  0.001  0.447 

Models*NW  0.937  0.124  0.702  0.166 

Models*OBS  0.008  0.022  0.009  0.047 

ACN < 0.001 < 0.001  0.960  0.002 

NW  0.406  0.613  0.476  0.310 

OBS  0.353  0.007  0.209  0.001 
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Table 6. P values of ANCOVA testing for differences in error matrix parameters among fauna 

groups, with ACN, NW, and OBS as covariates. A separate analysis was performed for each model. 

Bold values are statistically significant 

a b c d

Fauna  0.121  0.611  0.121  0.611 

ACN < 0.001 < 0.001 < 0.001  0.009 

NW  0.057 < 0.001  0.057 < 0.001 

BIOCLIM 

 

OBS  0.312  0.008  0.312  0.008 

Fauna  0.337  0.654  0.337  0.654 

ACN < 0.001 < 0.001 < 0.001 < 0.001 

NW  0.303 < 0.001  0.303 < 0.001 

Habitat 

 

OBS  0.045  0.018  0.045  0.018 

Fauna  0.764  0.337  0.764  0.337 

ACN < 0.001 < 0.001 < 0.001 < 0.001 

NW  0.486 < 0.001  0.486 < 0.001 

Mahalanobis 

 

OBS  0.202  0.616  0.202  0.616 

Table 5. P values of one-way ANOVA testing for differences in error matrix parameters among 

fauna groups. A separate analysis was performed for each model. Bold values are statistically 

significant

a b c d

BIOCLIM  0.165 < 0.001  0.001 < 0.001 

Habitat  0.838  0.139  0.013  0.336 

Mahalanobis  0.852  0.575  0.959  0.518 
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Effect of models within fauna

In all three faunistic groups there were significant differences in error matrix parameters between 

the models (Tables 7, 8). The bats showed a pattern different from that of the birds or snails. In 

bats, the BIOCLIM model showed significantly higher scores, than the other two models, for ‘a’ 

and ‘b’ and lower scores for ‘c’ and ‘d’. In birds, the Habitat model showed significantly higher 

scores for ‘a’, ‘b’ and significantly lower scores for ‘c’ and ‘d’. The snails showed significant 

differences for ‘a’ and ‘c’; where in ‘a’ the Habitat model was significantly higher then 

BIOCLIM and in ‘c’ the Mahalanobis was higher than Habitat. With covariates added, only the 

bat fauna in BIOCLIM showed significant differences between models resulting in a 

significantly high score of ‘b’ and a significantly low score of ‘d’. 

 

Table 7. P values of repeated measures ANOVA testing for differences in error matrix parameters 

among models. A separate analysis was performed for each fauna. Bold values are statistically 

significant. 

a b c d

Bats  0.001 < 0.001  0.001  0.002 

Birds  0.004  0.028  0.001  0.017 

Snails  0.005  0.007  0.023  0.107 
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Table 8. P values of repeated measures ANOVA testing for differences in error matrix parameters 

among models, with ACN, NW, and OBS as covariates. A separate analysis was performed for each 

fauna. Bold values are statistically significant. 

a b c d

Models  0.524 < 0.001  0.524 < 0.001 

Models*ACN  0.223  0.012  0.223  0.012 

Models*NW  0.176  0.019  0.176  0.019 

Models*OBS  0.430  0.031  0.434  0.031 

ACN < 0.001  0.004  0.213  0.598 

NW  0.058  0.092  0.123  0.616 

Bats 

 

OBS  0.071  0.012  0.349  0.126 

Models  0.698  0.622  0.149  0.957 

Models*ACN < 0.001  0.340 < 0.001  0.588 

Models*NW  0.777  0.232  0.017  0.594 

Models*OBS  0.260  0.328  0.115  0.285 

ACN < 0.001  0.011  0.026  0.020 

NW  0.424  0.452  0.537  0.754 

Birds 

 

OBS  0.749  0.050  0.260  0.037 

Models  0.034  0.283  0.023  0.880 

Models*ACN  0.053  0.094  0.141  0.747 

Models*NW  0.525  0.636  0.504  0.695 

Models*OBS  0.178  0.780  0.204  0.786 

ACN < 0.001  0.047  0.971  0.870 

NW  0.154  0.313  0.477  0.640 

Snails 

 

OBS  0.019  0.826  0.684  0.308 
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Effect of species parameters

Incidence (ACN): Owing to the way ACN is calculated (i.e., (a+c)/N), there was a strong 

positive effect of ACN on the ‘a’ and ‘c’ parameters in all fauna groups (Table 9, Figures 6-9). 

There was a strong negative effect of ACN on the ‘d’ parameter in all fauna groups. The ACN 

did not show any consistent effect on the ‘b’ parameter. In bats it showed a negative effect, in 

snails a positive one, while in birds it did not show any significant affect. 

Niche-width (NW): Birds and snails showed a significant positive effect of NW on ‘a’. The 

effect of NW on ‘b’ and ‘c’ was not consistent (Table 10, Figures 6-9). All fauna showed a 

significant negative effect of NW on the ‘d’, this parameter had the highest coefficient of 

determination (R2). In Birds all parameters showed a positive significant effect, except for the ‘d’ 

that had a negative one.  

Number of Observations (OBS): For all fauna groups, there was a positive effect of OBS 

on the ‘a’ parameter and a negative one on ‘d’ (Table 11, Figures 6-9). The corresponding effects 

on ‘b’ and ‘c’ parameters were not consistent. In bats in the BIOCLIM model, only the ‘a’ 

parameter was significantly effected by OBS. The other two models showed significant effects 

on, ‘a’, ‘c’ and ‘d’. In birds, most of the effects were statistically significant. In the BIOCLIM 

model all parameters were significant, in Habitat only the ‘c’ parameter was not significant. In 

the Mahalanobis model only the ‘b’ parameter was not significant. Snails showed a much clearer 

pattern: in all models, the ‘b’ and ‘c’ parameters were not significant whereas in the Mahalanobis 

model only the ‘d’ parameter was not significant.  
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Table 9. R2 values of regression models testing the effect of ACN on error matrix parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of ACN. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

ACN 

 MODEL 

Fauna Validation 
parameters 

BIOCLIM Mahalanobis Habitat 

a 0.994 lin (+) 0.943 lin (+) 0.951 lin (+) 

b 0.390 log (-) 0.369 log (-) ns 

c ns 0.435 lin (+) 0.392 log (+) 
Bats 

d ns 0.780 lin (-) 0.612 lin (-) 

a 0.961 lin (+) 0.885 lin (+) 0.973 lin (+) 

b ns ns ns 

c 0.405 log (+) 0.658 lin (+) ns 
Birds 

d 0.597 lin (-) 0.615 lin (-) 0.496 lin (-) 

a 0.743 lin (+) 0.845 lin (+) 0.782 lin (+) 

b ns 0.403 qua (+) 0.383 qua (+)

c 0.621 lin (+) 0.734 lin (+) 0.421 qua (+)
Snails 

d 0.758 lin (-) 0.589 qua (-) 0.562 lin (-) 
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Table 10. R2 values of regression models testing the effect of NW on error matrix parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of NW. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

NW 

 MODEL 

Fauna Validation 
parameters 

BIOCLIM Mahalanobis Habitat 

a ns ns ns 

b ns 0.431 qua (-) ns 

c ns ns ns 
Bats 

d 0.600 log (-) 0.401 lin (-) 0.368 lin (-) 

a 0.472 lin (+) 0.282 log (+) 0.263 log (+) 

b 0.334 lin (+) 0.160 lin (+) 0.364 lin (+) 

c ns 0.176 lin (+) 0.307 qua (+)
Birds 

d 0.798 lin (-) 0.596 lin (-) 0.706 lin (-) 

a 0.263 log (+) 0.450 lin (+) 0.590 lin (+) 

b 0.231 lin (+) ns ns 

c ns ns ns 
Snails 

d 0.435 lin (-) 0.280 log (-) 0.428 log (-) 
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Table 11. R2 values of regression models testing the effect of OBS on error matrix parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of OBS. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

OBS 

 MODEL 

Fauna Validation 
parameters 

BIOCLIM Mahalanobis Habitat 

a 0.850 lin (+) 0.728 lin (+) 0.789 lin (+) 

b ns ns ns 

c ns 0.639 log (+) 0.656 qua (-) 
Bats 

d ns 0.832 lin (-) 0.820 lin (-) 

a 0.554 lin (+) 0.428 log (+) 0.537 lin (+) 

b 0.182 log (+) ns 0.175 log (+) 

c 0.138 lin (+) 0.493 lin (+) ns 
Birds 

d 0.692 log (-) 0.520 log (-) 0.676 log (-) 

a 0.606 lin (+) 0.539 lin (+) 0.616 lin (+) 

b ns ns ns 

c ns ns ns 
Snails 

d 0.232 lin (-) ns 0.254 lin (-) 
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Figure 6. Plots of the effect of species parameters (NW, OBS, and ACN) on the normalized ‘a’ error 
matrix parameter (the ‘a’ was normalized by the number of validation cells: a/N). Bats in red, birds 
in black, snails in blue. 
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Figure 7: Plots of the effect of species parameters (NW, OBS, and ACN) on the normalized ‘b’ 
error matrix parameter (the ‘b’ was normalized by the number of validation cells: b/N). Bats in 
red, birds in black, snails in blue. 
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Figure 8: Plots of the effect of species parameters (NW, OBS, and ACN) on the normalized ‘c’ error 
matrix parameter (the ‘c’ was normalized by the number of validation cells: c/N). Bats in red, birds 
in black, snails in blue.
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Figure 9: Plots of the effect of species parameters (NW, OBS, and ACN) on the normalized ‘d’ 
error matrix parameter (the ‘d’ was normalized by the number of validation cells: d/N). Bats in 
red, birds in black, snails in blue. 
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Measures of predictive accuracy 

 

Combined effects of models and fauna

The Kappa statistic showed no significant difference between models or fauna. The interaction 

between the two effects was also not significant. Adding the covariates did not have a significant 

effect on these results (Figure 10, Tables 12, 13). Sensitivity showed a significant difference only 

for the interaction. Both Overall Accuracy and Specificity showed that BIOCLIM had 

significantly poorer performance than the other two models. Snails had significantly higher 

Specificity scores than the other groups. Bats in BIOCLIM had significantly lower validation 

scores than all other fauna and model groups. Adding covariates hardly affected the results. 
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Figure 10. Error bars of model validation parameters (Mean ± S.D.). Letters represent the different 
significant groups. 
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Effect of fauna within models

Only the BIOCLIM model showed significant differences between the fauna groups (Tables 14, 

15). Kappa did not show a significant difference between models, between fauna, or their 

interaction. It did not show any significant difference when the covariates were added. Bats in 

BIOCLIM had a significantly higher score in Overall Accuracy and Sensitivity while a relatively 

low score in Specificity. Adding covariates made the effect of fauna non significant in all 

models. 

 

Kappa Overall 
Accuracy 

Sensitivity Specificity

Models  0.092  0.002  0.180 < 0.001 

Fauna  0.144  0.084  0.934  0.008 

Model*Fauna  0.763 < 0.001 < 0.001 < 0.001 

Table 12. P values of repeated measures ANOVA testing the effects of models and fauna on 

validation parameters. Bold values are statistically significant. 

Table 13. P values of the repeated measures ANOVA testing the effects of models and fauna on 

validation parameters, with ACN, OBS, and NW as covariates. Bold values are statistically 

significant. 

Kappa Overall 
Accuracy Sensitivity Specificity 

Models  0.807  0.684  0.400  0.356 

Fauna  0.161  0.014  0.848  0.001 

Model * Fauna  0.993 <0.001 < 0.001 < 0.001 

Models*ACN  0.290  0.009  0.784  0.272 

Models*NW  0.890  0.209  0.562  0.266 

Models*OBS  0.386  0.743  0.110 < 0.001 

ACN  0.003  0.001  0.529  0.054 

NW  0.041 < 0.001  0.478 < 0.001 

OBS  0.292  0.124  0.240  0.011 
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Table 14. P values of one-way ANOVA testing for differences in validation parameters, among 

fauna groups. A separate analysis was performed for each model. Bold values are statistically 

significant. 

Kappa Overall 
Accuracy 

Sensitivity Specificity 

BIOCLIM  0.126  0.001  0.008 < 0.001 

Habitat  0.220  0.358  0.142  0.056 

Mahalanobis 0.238  0.600  0.312  0.285 

Table 15. P values of ANCOVA testing for differences in validation parameters among fauna 

groups, with ACN, OBS and NW as covariates. A separate analysis was performed for each model. 

Bold values are statistically significant. 

Kappa Overall 
Accuracy 

Sensitivity Specificity 

Fauna  0.404  0.593  0.377  0.660 

ACN  0.001 < 0.001  0.222  0.010 

NW < 0.001 < 0.001  0.059 < 0.001 

BIOCLIM 

 

OBS  0.552  0.062  0.054  0.006 

Fauna  0.293  0.474  0.370  0.402 

ACN  0.002  0.001  0.868  0.016 

NW  0.114 < 0.001  0.400 < 0.001 

Habitat 

 

OBS  0.137  0.208  0.270 < 0.001 

Fauna  0.325  0.328  0.396  0.352 

ACN  0.036  0.132  0.630  0.280 

NW  0.042  0.002  0.811  0.001 

Mahalanobis

OBS  0.684  0.358  0.903  0.719 
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Effect of models within fauna

Kappa and Overall Accuracy showed the lowest differences between models in all faunistic 

groups (Tables 16, 17). The Kappa had no significant difference between fauna, nor did it show 

any significant difference when the covariates were added. In bats the BIOCLIM model showed 

a high score for Sensitivity and low scores for Specificity and Overall Accuracy. Birds showed a 

different pattern; the Habitat model had a significantly low Specificity score and a significantly 

high Sensitivity score. Snails showed a similar pattern as birds, except that the Mahalanobis 

model in Specificity was not significantly different from the other models. Sensitivity in the 

Mahalanobis was not significantly different from the Habitat model. Adding the covariates to the 

test resulted in all models becoming not significantly different from each other. 

 

Table 16. P values of repeated measures ANOVA testing for differences in validation parameters 

among models. A separate analysis was performed for each fauna. Bold values are statistically 

significant. 

Kappa Overall 
Accuracy 

Sensitivity Specificity 

Bats  0.276  0.011  0.011 < 0.001 

Birds  0.499  0.376  0.039 < 0.001 

Snails  0.371  0.664  0.001  0.003 
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Table 17. P values of repeated measures ANOVA testing for difference in validation parameters 

among models, with ACN, NW and OBS as covariates. A separate analysis was performed for each 

fauna. Bold values are statistically significant.

Kappa Overall 
Accuracy 

Sensitivity Specificity 

Models  0.521  0.666  0.389  0.704 

Models*ACN  0.272  0.239  0.487  0.007 

Models*NW  0.122  0.017  0.394  0.049 

Models*OBS  0.159  0.216  0.589  0.009 

ACN  0.002  0.010  0.001  0.131 

NW  0.043  0.112  0.112  0.042 

Bats 

 

OBS  0.006  0.071  0.002  0.142 

Models  0.583  0.207  0.215  0.332 

Models*ACN  0.323  0.006  0.576  0.495 

Models*NW  0.574  0.013  0.547  0.165 

Models*OBS  0.580  0.758  0.387  0.015 

ACN  0.002  0.002  0.994  0.012 

NW  0.090 < 0.001  0.715 < 0.001 

Birds 

 

OBS  0.047  0.81  0.622  0.002 

Models  0.642  0.457  0.091  0.381 

Models*ACN  0.471  0.084  0.641  0.591 

Models*NW  0.968  0.996  0.821  0.726 

Models*OBS  0.693  0.828  0.449  0.577 

ACN  0.809  0.343  0.001  0.992 

NW  0.758  0.527  0.297  0.322 

Snails

OBS  0.188  0.195  0.034  0.345 
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Effect of species parameters

Incidence (ACN): ACN had a clear quadratic effect on Kappa in all fauna groups (Table 

18, figures 11-14). The responses of the other parameters to variation in ACN were not 

consistent. 

Niche-width (NW): Birds showed a statistically significant effect of NW on all validation 

parameters. The effect on Specificity and Overall Accuracy was negative, while that on 

Sensitivity was not consistent (Table 19, figures 11-14). Snails hardly showed any significant 

effect. Bats had a negative effect of NW on Specificity. 

Number of Observations (OBS): The bat fauna in all models did not show any significant 

effect of OBS on the validation parameters (Table 20, Figures 11-14). Snails showed no 

consistent effects of OBS on all parameters. Birds, showed a significant negative effect of the 

OBS on Overall Accuracy and Specificity. 

 



36

 

Table 18. R2 values of regression models testing the effect of ACN on validation parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of ACN. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

ACN 

 MODEL 

Fauna 
Validation 

parameters 
BIOCLIM Mahalanobis Habitat 

Kappa 0.472 qua (-) 0.546 qua (-) ns 

Sensitivity ns 0.378 log (+) ns 

Specificity ns ns ns Bats 

Overall 

Accuracy 
0.402 log (+) ns ns 

Kappa 0.267 qua (-) ns ns 

Sensitivity ns ns ns 

Specificity 0.158 lin (-) ns 0.142 lin (-) Birds 

Overall 

Accuracy 
ns ns ns 

Kappa 0.384 qau (-) 0.434 qua (-) 0.633 qua (-) 

Sensitivity ns 0.440 log (-) ns 

Specificity ns 0.314 qua (-) 0.347 qua (-) Snails 

Overall 

Accuracy 
0.385 qua (-) 0.385 qua (-) 0.443 qua (-) 
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Table 19. R2 values of regression models testing the effect of NW on validation parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of NW. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

NW

MODEL 

Fauna 
Validation 

parameters 
BIOCLIM Mahalanobis Habitat 

Kappa 0.395 log (-) 0.414 log (-) ns 

Sensitivity ns ns ns 

Specificity 0.544 log (-) 0.620 log (-) 0.413 log (-) Bats 

Overall 

Accuracy 
ns 0.546 qua (+) ns 

Kappa ns 0.412 qua (-) 0.422 qua (-) 

Sensitivity 0.236 log (+) 0.277 qua (-) 0.249 qua (-) 

Specificity 0.593 lin (-) 0.419 lin (-) 0.619 lin (-) Birds 

Overall 

Accuracy 
0.438 lin (-) 0.316 lin (-) 0.380 lin (-) 

Kappa ns ns ns 

Sensitivity ns ns 0.190 log (+) 

Specificity 0.315 lin (-) ns ns Snails 

Overall 

Accuracy 
0.198 lin (-) ns ns 
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Table 20. R2 values of regression models testing the effect of OBS on validation parameters. 

Regression models were constructed using linear models as well as quadratic and logarithmic 

transformations of OBS. The results given are those that showed the best fit. The sign indicates the 

direction (positive or negative) of the effect.  

OBS 

 MODEL 

Fauna 
Validation 

parameters 
BIOCLIM Mahalanobis Habitat 

Kappa ns ns ns 

Sensitivity ns ns ns 

Specificity ns ns ns Bats 

Overall 

Accuracy 
ns ns ns 

Kappa ns ns ns 

Sensitivity 0.375 log (+) ns 0.231 log (+) 

Specificity 0.477 lin (-) 0.133 lin (-) 0.474 lin (-) Birds 

Overall 

Accuracy 
0.288 log (-) 0.152 lin (-) 0.138 log (-) 

Kappa 0.241 log (+) ns 0.289 log (+) 

Sensitivity ns ns 0.432 log (+) 

Specificity ns ns ns Snails 

Overall 

Accuracy 
ns ns ns 
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Figure 11. Plots of the effect of species parameters (NW, OBS, and ACN) on Kappa. Bats in red, 
birds in black, snails in blue. 
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Figure 12. Plots of the effect of species parameters (NW, OBS, and ACN) on Overall Accuracy. Bats 
in red, birds in black, snails in blue. 
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Figure 13. Plots of the effect of species parameters (NW, OBS, and ACN) on Sensitivity. Bats in red, 
birds in black, snails in blue. 
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Figure 14. Plots of the effect of species parameters (NW, OBS, and ACN) on Specificity. Bats in red, 
birds in black, snails in blue. 
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Discussion 

A variety of Climatic Envelope Models (CEMs) have been proposed in the literature 

(Guisan & Zimmerman 2000). Yet, very few studies have compared the accuracy of predictions 

derived from different CEMs. In principle, the accuracy of CEMs depends on three factors: (1) 

the accuracy of the dataset used for model calibration; (2) the accuracy of the climate dataset; 

and (3) the algorithm used to determine the climatic envelope. By constraining the first two 

factors, I was able to evaluate the effect of model algorithms on the accuracy of predictions 

generated by such models (Figure 16). In general, little difference was found between the models 

in their ability to correctly predict species distribution. Differences among fauna groups in 

predictive accuracy were also not statistically significant in most cases. Those differences that 

were found could be attributed to differences among species in properties such as incidence and 

niche-width. 

 

Models 

The absolute low value of the ‘c’ parameter in all models reflects little errors in predicting that a 

particular species will not be present where it really occurs (i.e., False present). By implication, 

CEMs are expected to make bigger errors in over predicting presence than in under predicting 

presence of a species. Previous works have found a similar pattern (Araujo & Williams 2000; 

Robertson et al. 2003). The BIOCLIM model differed from the other two models by the need to 

exclude 10% outliers from the dataset, in order for its prediction to be most accurate. This need 

is explained by the way the niche envelope is created in the BIOCLIM model which, by creating 

a rectangular niche envelope, over expects the presence of the species. This is reflected in 

relatively high ‘a’, ‘b’ and low ‘c’, ‘d’. The Mahalanobis model, which creates elliptic niche 

envelopes (Farber & Kadmon 2003), predicts a more restricted distribution of species, and has a 

relatively high ‘c’, ‘d’ and low ‘a’, ‘b’. Predictions of the habitat model resemble those of 

Mahalanobis, due to the convex hull shape of its envelope, which narrows the climatic envelope 

of the species.  

The effect of excluding 10% of the outliers by the BIOCLIM model is evident in the bird 

and snail datasets. In bats the best predictions obtained with BIOCLIM were obtained without 

excluding outliers. The reason for this is the low number of observations per species, in the bat 

dataset (an average of 52.2 vs. 107.6 for snails and 175.8 for birds). Because of the low number 
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of observations, the elimination of outliers as done in BIOCLIM, decreased the number of 

observations tremendously and reduced the ability to accurately predict distribution ranges. 

Indeed, previous studies have found that a minimum of 50 sites in the calibrating dataset was 

needed for the BIOCLIM model to correctly predict distribution (McKenney et al. 1998; 

Stockwell & Peterson 2002; Kadmon et al. 2003). The present result corresponds to their 

findings. 

Once the BIOCLIM-bats are excluded, there is little difference between models in their 

ability to predict species distribution. Interestingly, works comparing CEMs with other types of 

models, did not find a significant difference as well (Elith & Burgman 2001; Robertson et al. 

2003). The Kappa parameter did not show any significant difference between the models. Once 

species properties is added to the test, most of the differences between the models become non 

significant, owing to their strong effect on the prediction of the model. 

Earlier works on CEMs have resulted in similar validation results as obtained in this study 

(Mean Kappa for: BIOCLIM = 0.37, Habitat = 0.42, Mahalanobis = 0.42). Farber and Kadmon 

(2003) working on woody plants distribution in Israel, found the mean Kappa of the BIOCLIM 

model to be 0.41 while that predicted by the Mahalanobis was 0.48. GLM modeling made by 

Jaberg & Guisan (2001) on three species of bats found a Kappa of 0.27-0.63. Manel et al. (2001) 

tested three different models (logistic regression, discriminate analysis and neural networks) 

using data on river birds and got a mean Kappa of 0.15-0.36. 

 

Fauna 

Species properties, which depend on scale, patchiness and dispersal, constitute an important 

impact on the ability of a model to correctly predict distribution (Wiens 2001). The species 

analyzed in this work were chosen from three different systematic groups, differing in their 

manner of dispersal and their provenance in field surveys. The easier it is to find a species in the 

field, the more likely it would be included in the dataset, and so will have a bigger database, 

unless specific surveys were conducted. Snails have short-range dispersal and are easy to detect 

in the field, while, birds have long-range dispersal and are also easy to detect. Bats have long-

range dispersal but are relatively hard to detect in the field. Yet the three fauna groups showed 

little difference in the ability of the models to correctly predict their distribution. Of the three 

models, only BIOCLIM showed a difference between the groups. This is explained by the fact 
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that in BIOCLIM-bats there was no exclusion of outliers and the dataset was incomplete 

probably due to the fact that bats are hard to detect. This significant difference disappeared once 

covariates were added to the test.  

Unlike Pearce et al. (2001), there was no difference among fauna groups in the ability of 

the models to correctly predict the species distribution. It seems that the bat fauna is the odd one 

out of the three fauna groups; this is explained by the low number of observations per species in 

the dataset. Bat fauna in the other two models did not cause any significant difference on the 

performance of the models. BIOCLIM is sensitive to the number of sites because of its 

rectilinear envelope algorithm. The difference is not caused solely because of the dataset quality 

or the BIOCLIM algorithm, but the combination of the two; the low number of sites per species 

and the sensitivity of the BIOCLIM model to this sort of bias. 

 

Species properties 

The ACN showed a strong effect on the ‘a’, ‘c’ and ‘d’ parameters. The positive effect on ‘a’ and 

‘c’ is expected due to the way the ACN is calculated i.e., (a+c)/N. The ACN was found to 

negatively effect the ‘d’ parameter as well. This finding was expected as a by product of the high 

correlation with the ‘a’ parameter. A negative quadratic effect of ACN was found on Kappa. 

This effect is due to the manner in which Kappa is calculated (Figure 15). 

OBS was found to positively effect the ‘a’ and negatively effect the ‘d’. This is due to the 

high correlation between number of observations in each dataset and species rarity. Rare species 

obviously have fewer observations in the dataset, and will have a high ‘d’ and low ‘a’. Unlike 

earlier studies, in the present research Kappa did not show a significant affect, perhaps because 

we adapted the minimum of 25 observations as a limit for modeling. In previous studies, Kappa 

did not improve significantly when the number of observations in the calibrating dataset was 

increased above 50 (McKenney et al. 1998; Stockwell & Peterson 2002; Kadmon et al. 2003). 

NW was found to negatively effect ‘d’ and positively effect ‘a’. Because of the high 

correlation between climatic range and geographic range in the study area (Farber 2000), most 

species show a clear correlation between the geographic range and the width of their niche. NW 

had a negative effect on Specificity. This indicates that CEM is able to better predict true 

absence of a species, if that species has a narrow niche. 
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When evaluating individual species prediction maps, it is obvious that species with specific 

climatic restrictions are better predicted (Figure 17). 

 

Considerations in creating distribution maps 

The prediction ability of CEMs is similar between different organisms. 

When making a distribution map from CEMs, one must decide whether the model should 

error towards an over predicting or under predicting species presence. In general, both types of 

models will be equally accurate, the difference between them being in the emphasis of the error. 

For example, if a researcher wishes to draw a risk assessment map of species distribution, he 

would be wise to prefer the BIOCLIM model. If, on the other hand, a map is needed to assess 

new potential areas to look for a certain species, Mahalanobis is appropriate (Figure 16). A 

different approach to this matter is to change the mahalanobis radius or the BIOCLIM, Habitat 

percentile range. An additional consideration is whether the prediction should include all the 

calibrating dataset points. Habitat and BIOCLIM include in their predictions all the observations 

used to calibrate them. Mahalanobis, on the other hand, does not. Its prediction size is relative to 

the mahalanobis radius selected (Farber 2000). A minimum of 50 record sites per species is 

essential for an accurate prediction. 
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Figure 15: The Kappa bias is better explained by the simplified Kappa algorithm (the equation on the right). Notice 
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Figure 16: Differences in all three models in their prediction, relative to outliers removed from the calibrating dataset. Red dots 
are the calibrating dataset, blue is the model prediction, and circles are the validation dataset (open circles: species not found, 
circles with black dots: species found). Data taken from the snail fauna (Buliminus labrosus). 
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Figure 17. Models predicting species distribution.  

Two maps with high prediction of species distribution (Kappa = 1), (i) a map of Pipistrellus bodenheimeri (bat fauna), a 
species inhabiting the desert climate zone. (ii) a map of Sphincterochila cariosa (snail fauna), a species inhabiting the 
Mediterranean climate zone.  

Two maps with low prediction of species distribution (Kappa = -0.21), (iii) a map of Rhinolophus hipposideros (bat fauna), a 
species without a distinctive climatic distribution and rare. (iiii) a map of Emberiza striolata (bird fauna), a species found in 
micro-habitats of cliffs and rocky grounds in the desert climate zone. 

Red dots are the calibrating dataset, blue is the model prediction, and circles are the validation dataset (open circles: 
species not found, circles with black dots: species found) 

i ii iii iiii
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Appendix – Species used in this work 

Bat fauna 

Species name OBS NW ACN Fauna
Asellia tridens 37 0.76 0.11 Bats 
Eptesicus bottae 38 0.35 0.26 Bats 
Myotis nattereri 26 0.69 0.05 Bats 
Otonycteris hemprichi 25 0.48 0.21 Bats 
Pipistrellus bodenheimeri 36 0.33 0.26 Bats 
Pipistrellus kuhli 146 0.92 0.89 Bats 
Plecotus austriacus 34 0.92 0.21 Bats 
Rhinolophus ferrumequinum 68 0.68 0.42 Bats 
Rhinolophus hipposideros 49 0.61 0.11 Bats 
Rhinopoma hardwickei 71 0.59 0.32 Bats 
Rhinopoma microphyllum 33 0.50 0.16 Bats 
Tadarida teniotis 91 0.71 0.63 Bats 
Taphozous nudiventris 25 0.54 0.21 Bats 

Snail fauna 

Species name OBS NW ACN Fauna
Buliminus glabratus 28 0.24 0.07 Snail 
Buliminus labrosus 181 0.51 0.26 Snail 
Buliminus therinus 72 0.37 0.04 Snail 
Eopolita protensa 110 0.61 0.41 Snail 
Euchondrus albulus 81 0.41 0.26 Snail 
Euchondrus chondriformis 50 0.29 0.22 Snail 
Euchondrus saulcyi 52 0.54 0.15 Snail 
Euchondrus septemdentatus 189 0.89 0.41 Snail 
Granopupa granum 36 0.42 0.56 Snail 
Levantina caesareana 202 0.87 0.44 Snail 
Levantina hierosolyma 164 0.75 0.41 Snail 
Metafruticicola fourousi 47 0.49 0.22 Snail 
Monacha haifaensis 185 0.61 0.44 Snail 
Paramastus episomus 91 0.58 0.22 Snail 
Pene sidoniensis 125 0.65 0.26 Snail 
Rupestrella rhodia 34 0.53 0.11 Snail 
Sphincterochila cariosa 78 0.70 0.37 Snail 
Sphincterochila fimbriata 116 0.52 0.07 Snail 
Sphincterochila prophetarum 85 0.51 0.26 Snail 
Sphincterochila zonata 131 0.41 0.30 Snail 
Trochoidea langloisiana 61 0.50 0.04 Snail 
Trochoidea tuberculosa 66 0.43 0.07 Snail 
Xeropicta vestalis 292 0.79 0.48 Snail 
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Bird fauna 

Species name OBS NW ACN Fauna
Alectoris chukar 914 0.98 0.81 Birds 
Ammomanes deserti 159 0.52 0.43 Birds 
Ammoperdix heyi 222 0.54 0.33 Birds 
Anthus similis 29 0.86 0.19 Birds 
Athene noctua 307 0.80 0.05 Birds 
Cercomela melanura 202 0.52 0.14 Birds 
Cisticola juncidis 39 0.61 0.14 Birds 
Columba livia 148 0.93 0.43 Birds 
Corvus corone 338 0.71 0.38 Birds 
Corvus rhipidurus 63 0.39 0.10 Birds 
Corvus ruficollis 211 0.50 0.29 Birds 
Dendrocopos syriacus 204 0.79 0.33 Birds 
Emberiza striolata 25 0.39 0.14 Birds 
Francolinus francolinus 90 0.57 0.05 Birds 
Galerida cristata 374 0.93 0.48 Birds 
Garrulus glandarius 366 0.90 0.29 Birds 
Nectarinia osea 237 0.77 0.48 Birds 
Oenanthe leucopyga 82 0.49 0.10 Birds 
Parus lugubris  25 0.41 0.05 Birds 
Parus major 248 0.77 0.48 Birds 
Passer domesticus 295 1.00 0.19 Birds 
Prinia gracilis 320 0.78 0.33 Birds 
Pterocles coronatus 65 0.42 0.05 Birds 
Pycnonotus xanthopygos 552 0.79 0.57 Birds 
Scotocerca inquieta 120 0.76 0.33 Birds 
Sitta neumayer 25 0.66 0.05 Birds 
Streptopelia decaocto 263 0.74 0.71 Birds 
Streptopelia senegalensis 198 0.90 0.10 Birds 
Strix butleri 46 0.51 0.05 Birds 
Turdoides squamiceps 118 0.49 0.05 Birds 
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 תקציר

על מנת ליצור מפות תפוצה. מפות תפוצה של מינים מהוות כלי חשוב לממשק שמירת טבע

דבר הדורש משאבים רבים ובדרך, בכל אזור תפוצתו, יש צורך בבסיס ידע נרחב בנוגע למין

את תפוצת המינים) לנבא(היא להעריך, מעשית יותר, אפשרות חלופית. כלל אינו אפשרי

 זו לכל מין דרישותהלפי תיאורי. חביים שנשענים על תיאורית הנישהבאמצעות מודלים מר

אם נזהה את הדרישות הייחודיות למין. הדרושות לו לשם קיום, סביבתיות המייחדות אותו

.נוכל להעריך את תחום הנישה הפוטנציאלי שלו ולמפות אותה

תו-בספרות האקולוגית הוצעו מספר מודלים ביו מודלים. רת הנישהאקלימיים הנשענים על

אלו מזהים בעזרת נתוני תפוצה של המין את דרישות הנישה האקלימית ומציגות אותה 

מעט מאוד ניסיונות נעשו, למרות השימוש הרב של מודלים כאלו במחקר. באמצעות מפה

להשוות את יכולת הניבוי של מודלים שונים ולזהות את הקשר שבין יכולת הניבוי של המודל 

ה אקלימיים-בעבודה זו בדקתי שלושה מודלים ביו. מינים והנתונים הזמינים לפיתוחוותכונות

על) Mahalanobisו BIOCLIM, Habitat(שונים   מינים שמייצגים66באמצעות נתוני תפוצה

גם. ציפורים מקננות יציבות ושבלולי יבשה, עטלפי חרקים: שלוש קבוצות סיסטמטיות בדקתי

רוחב נישה, שכיחות הופעה(רים לביולוגיה של המין עצמו השפעה של פרמטרים הקשו

של. על יכולת הניבוי של המודלים) ומספר תצפיות במאגר המידע לשם הערכת יכולת הניבוי

המודלים נדגמו אתרים ברחבי הארץ באופן בלתי תלוי למאגר המידע שבעזרתו כוילו 

.המודלים

ה.ו שהוזכרו בספרותטיב הניבוי של המודלים שנבדקו נמצא דומה לאל -למעט מודל

BIOCLIMכמו כן לא נמצאו. לא נמצא הבדל מובהק בין המודלים השונים, בעטלפים

.זאת בניגוד לתוצאות מעבודות קודמות, הבדלים בין הקבוצות הסיסטמתיות השונות

ה  של התצפיות הקיצוניות מנתוני 10% נתן תחזית טובה כאשר קוצצו BIOCLIMמודל

שלא, הכיול  של התצפיות הקיצוניות 10%ולם בשל מיעוט תצפיות במאגר העטלפים הורדה

. פגעה בטיב הניבוי



ניתוח הפרמטרים המתייחסים לתכונות המינים הראה שיש קשר הדוק בין נדירות המין

המצאות-אי/ תלוי ביחס תדירות המצאותKappaיחס זה מוסבר בשל היות. Kappaלפרמטר 

לא נמצא קשר בין מספר התצפיות ליכולת הניבוי של המודלים. תוניםשל המין במאגר הנ

מ, השונים 25-אך הסיבה לכך יכולה להיות העובדה שרק מינים בעלי מספר תצפיות גבוה

ל. נכללו בניתוח  תצפיות אין שיפור משמעותי ביכולת50מחקרים קודמים הראו שמעבר

.הניבוי של המודל

היה במידת טעות הניבוי של המצאות המין באתרים בהם הוא ההבדל העיקרי בין המודלים

ה). False present(אינו קיים   חוזה תחום תפוצה גדול יחסית של המצאות BIOCLIM-מודל

מודל. בשל יצירת מעטפת אקלים מלבנית המתעלמת מקורלציות בין משתני האקלים, המין

שלהבשל אופיי, מראה טעות מסוג זה באופן מצומצם יותרMahalanobis-ה  האליפטי

.המעטפת האקלימית ורגישותה לקורלציות בין המשתנים

אם יש צורך; בחירת המודל ליצירת מפת תפוצה תלוי בצורך שלשמו מייצרים את המפה

של, לוודא שרוב תחום התפוצה האמיתי של המין אכן מופיע במפה וזאת על חשבון ניבוי יתר

ה רצוי להשתמש במוד, המצאות המין אם יש צורך בוודאות, לעומת זאת. BIOCLIMל

ה, גבוהה יותר שבתחום הניבוי המין אכן קיים . Mahalanobis-מומלץ להשתמש במודל מסוג

אם. שיקול נוסף הוא אם כלל האתרים בהם נצפה המין צריכים להיכלל בתחום מפת הניבוי

.Habitat או BIOCLIMיש להשתמש במודל, שיקול זה חשוב
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