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ABSTRACT

 

In spite of increasing application of presence-only models in ecology and conserva-
tion and the growing number of such models, little is known about the relative per-
formance of different modelling methods, and some of the leading models (e.g.
GARP and ENFA) have never been compared with one another. Here we compare
the performance of six presence-only models that have been selected to represent an
increasing level of model complexity [BIOCLIM, HABITAT, Mahalanobis distance
(MD), DOMAIN, ENFA, and GARP] using data on the distribution of 42 species of
land snails, nesting birds, and insectivorous bats in Israel. The models were cali-
brated using data from museum collections and observation databases, and their
predictions were evaluated using Cohen’s Kappa based on field data collected in a
standardized sampling design covering most parts of Israel. Predictive accuracy varied
between modelling methods with GARP and MD showing the highest accuracy,
BIOCLIM and ENFA showing the lowest accuracy, and HABITAT and DOMAIN
showing intermediate accuracy levels. Yet, differences between the various models
were relatively small except for GARP and MD that were significantly more accurate
than BIOCLIM and ENFA. In spite of large differences among species in prevalence
and niche width, neither prevalence nor niche width interacted with the modelling
method in determining predictive accuracy. However, species with relatively narrow
niches were modelled more accurately than species with wider niches. Differences
among species in predictive accuracy were highly consistent over all modelling
methods, indicating the need for a better understanding of the ecological and geo-
graphical factors that influence the performance of species distribution models.
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INTRODUCTION

 

Knowledge about the geographical distribution of species is

crucial for conservation and management of biodiversity (Margules

& Pressey, 2000). Yet, for most regions and most taxa, detailed

data on species distribution are usually not available and collecting

such data is costly and labour intensive (Prendergast 

 

et al

 

., 1999;

Bowker, 2000; Ottaviani 

 

et al

 

., 2004). Consequently, ecologists

and conservation scientists increasingly rely on predictive models

as a means for estimating patterns of species distribution and

informing conservation strategies (Peterson & Robins, 2003;

Araujo 

 

et al

 

., 2004; Ortega-Huerta & Peterson, 2004; Sánchez-

Cordero 

 

et al

 

., 2005). The number of methods available for

modelling patterns of species distribution is immense (Guisan &

Zimmermann, 2000; Scott 

 

et al

 

., 2002; Guisan & Thuiller, 2005),

and evaluating the relative performance of different methods

remains a continuous challenge in ecology and conservation

biology (Loiselle 

 

et al

 

., 2003; Thuiller, 2003; Ottaviani 

 

et al

 

.,

2004; Vaughan & Ormerod, 2005; Elith 

 

et al

 

., 2006; Pearson

 

et al

 

., 2006).

In general, two categories of methods for species distribution

modelling can be distinguished: methods that need presence–

absence data for model construction and methods that use presence-

only data as a basis for generating predictions. Presence-only

data differ from presence–absence data in that they indicate

locations where the target organism was observed to occur, but

cannot be used to define locations where the organism does not

occur (Dettmers & Bart, 1999). Some modelling techniques use

‘pseudo-absence’ data for model construction (e.g. Stockwell &

Peters, 1999; Zaniewski 

 

et al

 

., 2002; Engler 

 

et al

 

., 2004), but these
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are still classified as presence-only methods because there is no

real use of absence data in the construction of the model.

Presence-only records of species distribution, particularly

those obtained from herbaria and museum collections, provide

the oldest and most reliable documentation available on the

distribution of plant and animal species (Ponder 

 

et al

 

., 2001;

Williams 

 

et al

 

., 2002). Presence-only information is also much

more available and requires much less collection efforts than

presence–absence information. Recent progress in biodiversity

informatics (Bisby, 2000) and the development of extensive web

services and databases of biodiversity data (e.g. GBIF, MaNIS,

FishNet, HerpNet) have contributed significantly to the accessibil-

ity of such data to the public. Yet, despite the numerous applications

of presence-only models, relatively few studies have compared

the relative performance of different methods (Elith & Burgman,

2002; Ferrier 

 

et al

 

., 2002; Farber & Kadmon, 2003; Loiselle 

 

et al

 

.,

2003; Segurado & Araujo, 2004; Elith 

 

et al

 

., 2006). This lack of

data is in contrast to methods based on presence–absence data or

models using pseudo-absences such as generalized linear model

(GLM) and generalized additive model (GAM), whose properties

have been investigated much more intensively (e.g. Manel 

 

et al

 

.,

1999; Pearce & Ferrier, 2000; Thuiller 

 

et al

 

., 2003; Thuiller, 2003).

An exceptional case is a recent evaluation of 16 different methods

carried out by Elith 

 

et al

 

. (2006) based on distribution data of

226 species from six regions of the world. In the study, recently

developed methods that have rarely been applied to modelling

species distributions consistently outperformed more established

methods.

In this study, we compare the performance of some of the

most common methods of presence-only distribution models

using data on the distribution of snails, birds, and bats in

Israel. Specifically, we compare six different methods: BIOCLIM,

HABITAT, DOMAIN, Mahalanobis distance (hereafter MD),

Ecological Niche Factor Analysis (ENFA), and Genetic Algorithm

for Rule-set Prediction (GARP). To our knowledge, this is the

first study to compare some of the leading presence-only methods

with one another (e.g. ENFA and GARP). Considering previous

evidence that differences in predictive accuracy among models

may depend on the prevalence (proportion of the validation sites

in which the species was found) and niche width of the modelled

species (Pearce & Ferrier, 2000; Brotons 

 

et al

 

., 2004; Segurado &

Araujo, 2004; Elith 

 

et al

 

., 2006), we also quantified the prevalence

and niche width of each species and tested whether differences

among species in these properties interact with differences in the

modelling method in determining the accuracy of model predic-

tions. Such knowledge could assist in interpreting differences in

predictive accuracy between models and may allow a more

educated selection of modelling techniques.

 

METHODS

Environmental variables

 

Three climatic variables were chosen for constructing the models:

mean annual rainfall, mean daily temperature of the hottest

month (August), and mean minimum temperature of the coldest

month (January). These variables were chosen because they

showed high correlations with other climatic variables in the

study area but relatively low correlations among them (Steinitz

 

et al

 

., 2005). Together, these variables capture the main climatic

gradients of Israel (Kadmon & Danin, 1997; Kurtzman &

Kadmon, 1999) and previous studies have shown that they are

important determinants of distribution ranges of land snails

(Heller, 1988; Kadmon & Heller, 1998; Steinitz 

 

et al

 

., 2005), birds

(Shirihai, 1996; Steinitz 

 

et al

 

., 2005), and bats (Yom-Tov & Werner,

1996; Yom-Tov & Kadmon, 1998) in this region. Many previous

applications of species distribution models have used similar

indices as predictors of distribution patterns (Box 

 

et al

 

., 1993;

Carpenter 

 

et al

 

., 1993; Shao & Halpin, 1995; Eeley 

 

et al

 

., 1999)

and it seems that such a combination of rainfall and temperature

variables effectively represents correlates of physiological tolerance

(Martinez-Meyer, 2005). Preliminary analyses have indicated

that adding additional climatic and topographical variables (up

to a total of 23 variables) did not improve the accuracy of model

predictions. A map of mean annual rainfall of the study area was

constructed using data from 475 rainfall stations (Kadmon &

Heller, 1998). Maps of mean daily temperature of the hottest

month and mean minimum temperature of the coldest month

were produced using the data collected in 38 climatic stations

(Kurtzman & Kadmon, 1999). For the purpose of this study, all

maps were rescaled into spatial resolution of 1 km

 

2

 

.

 

Calibration data

 

The data used to construct the models included 7340 georeferenced

records of land snails (17 species, 2123 records), nesting land

birds (16 species, 4688 records), and bats (9 species, 529 records) in

Israel. The snail data were obtained from the Mollusk Collection

of The Hebrew University of Jerusalem. Records of bird distribu-

tion were obtained from the Zoological Collections of Tel Aviv

University and the Database Unit of the Israel Nature and Parks

Authority. Data on bat distribution were obtained from the

Mammalian Center of the Society for the Protection of Nature in

Israel, the Zoological Collections of Tel Aviv University, the

Harrison Institute, and unpublished observations of individual

researchers (M. Dor, Y. Barak, Y. Carmel, R. Feldman, and

C. Korine). Each record was checked for its geographical co-

ordinates and records positioned within any of the validation

sites (see below) were removed from the calibration data set.

 

Validation data

 

A field sampling was designed to collect a standardized set of

presence–absence data for model validation. The size of the

validation sites was adjusted to fit the spatial resolution of the

predictive maps generated by the models (1 km

 

2

 

). The geograph-

ical distribution of the sites was determined using a stratified

random sampling procedure with the aid of a geographical infor-

mation system in order to represent the main geographical and

climatic gradients of Israel. A total of 27 sites of 1 km

 

2

 

 were

selected for field sampling and of these, land snails were sampled

in all sites, birds in 21 sites, and bats in 19 sites. Although this
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sampling project required extensive logistic efforts, we believe

that a larger sample size could have increased the power of our

statistical tests.

A detailed description of the sampling design and the methods

used for sampling snails and birds can be found elsewhere (Steinitz

 

et al

 

., 2005). Bats were sampled using a combination of mist nets

(a total of 50 m 

 

×

 

 2.5 m) and three types of echolocation moni-

toring systems: frequency division bat detectors with data loggers

(ANABAT II, Titley Electronics, NSW, Australia); time expansion

bat detector (Pettersson D-980, Pettersson Elektronik, Uppsala,

Sweden); and heterodyne bat detectors (Pettersson D-200,

Pettersson Elektronik). Previous studies have shown that this

combination of monitoring and capturing techniques maximizes

the efficiency of bat sampling (O’Farrell & Gannon, 1999). Each

site was visited twice, once during the spring and again during

the summer. Sampling started 1 h before sunset and continued

until half an hour after sunrise. The echolocation data were

identified using a reference library that was created based on data

collected in preliminary surveys and relevant literature.

 

Models

 

Predictive maps were produced based on species occurrence data

using the methods BIOCLIM (Busby, 1986; Nix, 1986), HABITAT

(Walker & Cocks, 1991), MD (Farber & Kadmon, 2003), DOMAIN

(Carpenter 

 

et al

 

., 1993), ENFA (Hirzel 

 

et al

 

., 2002), and GARP

(Stockwell & Peters, 1999). All of these methods are based on the

concept of the ecological niche (Hutchinson, 1957). In each method,

some rules or mathematical algorithms are used to define the

ecological niche of the species based on the distribution of the

species records in the multidimensional environmental space.

Once the species niche is defined, its projection into the

geographical space produces a predictive map.

BIOCLIM defines the ecological niche of a species as the

bounding hyper-box that encloses all the records of the species

in the climatic space (Busby, 1991). Thus, it creates a rectilinear

‘envelope’ in the environmental space, defined by the most

extreme (minimum and maximum) records of the species on

each environmental variable. To reduce the sensitivity of model

predictions to outliers, the species records are sorted along each

variable and only the records that lie within a certain percentile

range of the data are used for model construction. In this study

we applied a percentile range of 95% (disregarding 2.5% of the

values on each side).

HABITAT defines the ecological niche as the convex hull of the

species records in the environmental space (Walker & Cocks,

1991). It differs from BIOCLIM in its ability to better adjust the

boundaries of the environmental envelope to the distribution

of the species records in the climatic space. As with BIOCLIM,

however, only the outer records are used to determine the

boundaries of the ecological niche.

The MD method ranks potential sites by their Mahalanobis

distance to a vector expressing the mean environmental conditions

of all the records in the environmental space. A certain distance

threshold is then used to define the boundaries of the ecological

niche. This algorithm produces an elliptic envelope that explicitly

accounts for possible correlations between the environmental

variables (Farber & Kadmon, 2003).

DOMAIN uses a point-to-point similarity metric (based on

the Gower distance) to assign a value of habitat suitability to each

potential site based on its proximity in the environmental space

to the closest (most similar) occurrence location (Carpenter

 

et al

 

., 1993). A threshold value of suitability can then be selected

to determine the boundaries of the ecological niche. Note that

in contrast to all previous methods, environmental envelopes

defined by DOMAIN are not necessarily continuous in the

environmental space.

ENFA calculates a measure of habitat suitability based on the

analysis of marginality (how the species mean differs from the

global mean) and environmental tolerance (how the species

variance compares to the global variance). A threshold of suitability

value can then be applied to determine the boundaries of the

ecological niche (Hirzel 

 

et al

 

., 2002).

GARP is a genetic algorithm that produces sets of rules that

delineate ecological niches in an artificial-intelligence-based

approach (Stockwell & Peters, 1999). Occurrence points are

resampled randomly to create training and test data sets and the

algorithm works in an iterative process of rule selection, evalua-

tion, testing, and incorporation or rejection. Predictive accuracy

is evaluated at each step based on the test presence data and a set

of ‘pseudo-absence’ points, and the change in predictive accuracy

from one iteration to the next is used to evaluate whether or not

a particular rule should be incorporated into the model.

 

Model application

 

All models except GARP were implemented within the MATLAB

environment. ENFA was simulated in MATLAB to produce

results equal to those calculated by BIOMAPPER (Hirzel 

 

et al

 

.,

2004). We used the Medians algorithm, which proved accurate in

most situations and has good generalization power (BIOMAPPER

manual). Box–Cox transformation of the environmental variables

produced slightly poorer results, and was therefore not used.

GARP predictions were generated using Desktop GARP

(Scachetti-Pereira, 2001). For each species we produced 100

prediction maps, using 50% of the calibration data set, with a

convergence limit of 0.01 and a maximum of 1000 iterations per

model. Ten best subsets were chosen using a soft extrinsic

measure of 20% omission and 50% commission. A potential site was

included in the environmental envelope if six or more of these

10 maps predicted presence. This threshold was determined

based on preliminary analyses that were designed to identify the

threshold that maximizes the average value of Kappa (see below).

To enable a standardized evaluation of all models, all predic-

tions were expressed as binary (presence–absence) predictive

maps. Threshold values were applied to transform predictions

generated by MD, ENFA, and DOMAIN to binary predictions.

For each model, the threshold that maximized the average Kappa

for all species was selected. Thresholds used were 5.5 for MD, 0.4

for ENFA, and 0.97 for DOMAIN. The percentile range used in

BIOCLIM (95%) was also selected to maximize the average value

of Kappa.



 

A. Tsoar 

 

et al

 

.

 

© 2007 The Authors

 

400

 

Diversity and Distributions

 

, 

 

13

 

, 397–405, Journal compilation © 2007 Blackwell Publishing Ltd

 

Accuracy assessment

 

Predictions of each model were compared to the validation data

set to form a confusion matrix, from which Cohen’s Kappa

(Cohen, 1960) was calculated. The Kappa statistic defines the

accuracy of prediction, relative to the accuracy that might have

resulted by chance alone. It ranges from 

 

−

 

1 to +1, where +1 indicates

perfect agreement between predictions and observations and

values of 0 or less indicate agreement no better than random

classification. Following previous evidence indicating that low

prevalence may introduce bias to estimates of accuracy based on

Kappa (McPherson 

 

et al

 

., 2004), only species with four or more

presences in the validation data set were included in the analysis.

 

Statistical analysis

 

The combined effects of modelling method and taxonomic

group on Kappa were tested using repeated measures analysis of

variance with modelling method as a within-subject factor and

taxonomic group as a between-subject factor. Analyses were

performed with and without prevalence (the proportion of the

validation sites in which the species was found, McPherson 

 

et al

 

.,

2004) and tolerance (a measure of niche width ranging from 0 to

1, Hirzel 

 

et al

 

., 2004) as covariates. Significance levels (

 

P

 

-values)

were calculated using exact (multivariate) tests because sphericity

could be assumed based on Mauchly’s test.

Further analyses were performed to test for correlations

between values of Kappa obtained from the various modelling

methods. Since high correlations can be achieved even if two

methods produce different predictions, we also compared the

predictive maps produced for each pair of models at the level of

individual sites. Such comparisons were performed separately

for each species using the Simple Matching coefficient (Hubalek,

1982). This measure counts the number of sites predicted to have

the same status (presence or absence) by two models and divides

it by the total number of validation sites. The average proportion

of validation sites that were identically classified by any two

methods was used as a measure for classification agreement.

 

RESULTS

 

Differences in Kappa among the three taxa were highly consist-

ent: snails showed the highest scores, birds showed intermediate

scores, and bats showed the lowest scores in all models (Fig. 1).

Variation in Kappa among modelling methods was less consist-

ent but a superiority of GARP and MD over all other models and

a low performance of BIOCLIM and ENFA could be detected,

particularly for birds and bats (Fig. 1). Repeated measures analysis

testing the combined effects of modelling method and taxo-

nomic group on Kappa indicated that the differences among

models were highly significant, those among taxa were nearly

significant, and the interaction between models and taxa was not

significant (Table 1). Similar results were obtained when toler-

ance and prevalence were included as covariates in the analysis

(Table 1). Neither tolerance nor prevalence interacted with the

modelling methods, indicating that differences among models

were robust to variation in the distribution properties of the species

as quantified in this study (Table 1). The results further show that

tolerance had a highly significant negative effect on Kappa and that

the effect of prevalence was not statistically significant (Table 1).

When data from all taxa were pooled (Fig. 2), GARP and MD

showed the highest Kappa scores (average ± SD = 0.554 ± 0.280

and 0.540 + 0.286, respectively), HABITAT and DOMAIN showed

intermediate scores (0.501 ± 0.263 and 0.479 ± 0.292, respectively),

and BIOCLIM and ENFA showed the lowest scores (0.454 ±

0.282 and 0.426 ± 0.242, respectively). Pairwise comparisons

revealed statistically significant differences between GARP and

BIOCLIM (

 

P =

 

 0.008), MD and BIOCLIM (

 

P =

 

 0.011), GARP

and ENFA (

 

P =

 

 0.002), and MD and ENFA (

 

P <

 

 0.001). After a

conservative Bonferroni correction for multiple (15) comparisons

(since the same set of species was used to evaluate each modelling

technique), only the latter two differences remain statistically

significant.

Figure 1 Effects of modelling method (BIOCLIM, HABITAT, GARP, 
ENFA, DOMAIN, and MD) and taxonomic group (snails, birds, and 
bats) on Kappa. Error bars represent mean ± 1 standard error.

Table 1 Results (P-values) of repeated measures analyses testing 
the effects of modelling methods (BIOCLIM, HABITAT, MD, 
DOMAIN, ENFA, GARP) and taxonomic group (snails, birds, bats) 
on Cohen’s Kappa. Analyses were performed with and without 
tolerance and prevalence as covariates. Statistically significant 
P-values are in bold.

Without covariates With covariates

Source of variation

Model 0.002 0.007

Taxonomic group 0.073 0.048

Model × taxonomic group 0.679 0.414

Prevalence 0.191

Tolerance < 0.001

Model × prevalence 0.165

Model × tolerance 0.153
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Kappa scores of predictive maps generated for individual

species were positively and significantly correlated over all

modelling methods (Table 2). The classification agreement

between different methods was higher than 0.7 in all cases except

for the GARP method that showed much lower agreement with

all other methods (Table 3).

 

DISCUSSION

 

Pearce & Ferrier (2000) suggested that algorithms used to fit

species distribution models can be ranked according to their

‘function complexity’. They compared different GLM and GAM

models and found that increasing model complexity was not

necessarily associated with better predictive power. The models

examined in our study also differ considerably from each other

in their complexity. BIOCLIM can be considered as the simplest

model: it assumes a rectilinear environmental envelope, it cannot

deal with correlations or interactions between the environmental

factors, and only the outer records along each environmental

variable are used to define the boundaries of the ecological niche.

HABITAT is a more flexible model that better fits the environ-

mental envelope to the distribution of the records in the environ-

mental space, but as with BIOCLIM, only the outer records are

taken into account in determining the ecological niche. DOMAIN

differs from BIOCLIM and HABITAT in its ability to cope with

discontinuity of the species records in the environmental space.

Its main limitation is that, for each potential site, only a single

record (the nearest neighbour at the environmental space) is

used to determine its suitability to the modelled species. ENFA

and MD take into account the distribution of all the records in

the environmental space and create elliptic envelopes that are

consistent with the assumption of unimodal responses to en-

vironmental gradients. MD has the advantage that it is calculated

based on the covariance matrix of the environmental variables

and, therefore, more directly reflects patterns of correlations

between the environmental factors (Farber & Kadmon, 2003).

GARP is the most flexible algorithm among the methods examined

in this study and has the advantage of an inherent mechanism for

iteratively evaluating and improving the rules used for generating

the predictive maps. The results of our analysis indicate that the

six modelling methods can be categorized into three groups

based on their Kappa scores: GARP and MD that were consist-

ently the most accurate models, BIOCLIM and ENFA that

showed the lowest accuracy, and HABITAT and DOMAIN that

were characterized by intermediate levels of accuracy. Thus,

except for the relatively poor performance obtained for ENFA,

our results are consistent with the hypothesis that increasing

model complexity may contribute to predictive accuracy. Elith

 

et al

 

. (2006) analysed a wider spectrum of modelling methods

and reached a similar conclusion, although their analysis was

based on a different approach.

Similarly to previous studies (e.g. Manel 

 

et al

 

., 2001; Guisan &

Hofer, 2003; Petit 

 

et al

 

., 2003; Rouget 

 

et al

 

., 2004), we found

considerable variation in predictive accuracy among individual

species. For example, the values of Kappa obtained for GARP and

MD, the most accurate models in this study, ranged from 

 

−

 

0.07

to 1.00 and from 

 

−

 

0.16 to 0.93, respectively. Kappa scores

obtained for individual species were positively and significantly

Figure 2 Differences in Kappa among modelling methods 
(BIOCLIM, HABITAT, GARP, ENFA, DOMAIN, and MD) when 
data for all taxa (snails, birds, and bats) are pooled. Error bars 
represent mean ± 1 standard error. Models sharing the same letters 
do not differ from each other significantly (P > 0.05 following 
Bonferroni corrections for multiple comparisons).

Table 2 Pearson correlation coefficients between Kappa scores of 
predictive maps produced for 42 species of snails, birds, and bats, 
using six modelling methods (BIOCLIM, HABITAT, MD, 
DOMAIN, ENFA, and GARP). Asterisks indicate levels of statistical 
significance (**P < 0.01; ***P < 0.001).

HABITAT MD DOMAIN ENFA GARP

BIOCLIM 0.628*** 0.731*** 0.665*** 0.630*** 0.658***

HABITAT 0.726*** 0.554*** 0.449** 0.679***

MD 0.709*** 0.757*** 0.775***

DOMAIN 0.546*** 0.667***

ENFA 0.555***

Table 3 Average proportions of classification agreement between 
predictive maps produced for 42 species of snails, birds, and bats, 
using six modelling methods (BIOCLIM, HABITAT, MD, 
DOMAIN, ENFA, GARP).

HABITAT MD DOMAIN ENFA GARP

BIOCLIM 0.790 0.793 0.731 0.825 0.561

HABITAT 0.826 0.790 0.748 0.425

MD 0.781 0.766 0.453

DOMAIN 0.722 0.456

ENFA 0.428
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correlated across models (Table 2), indicating that the differences

in predictive accuracy among species were relatively robust to

variation in the modelling methods. This conclusion is further

supported by the lack of significant interactions between the

effects of modelling method and species characteristics.

Our results show that tolerance had a negative effect and

prevalence had no effect on predictive accuracy. The observed

negative effect of tolerance on predictive accuracy is in agreement

with previous studies, showing that distribution ranges of species

with restricted ecological niches can be modelled with higher

accuracy than those of more generalist species (Pearce 

 

et al

 

., 2001;

Hepinstall 

 

et al

 

., 2002; Stockwell & Peterson, 2002; Kadmon

 

et al

 

., 2003; Berg 

 

et al

 

., 2004; Brotons 

 

et al

 

., 2004; Seguardo &

Araujo, 2004). Brotons 

 

et al

 

. (2004) proposed that species in-

habiting a wide range of habitats in a certain area might not be

limited by any of the measured predictive factors at the scale at

which the models are fitted and may therefore show low predictive

accuracy. Another possible explanation for the negative relationship

between tolerance and predictive accuracy is that widespread

species show local or regional differences in ecological character-

istics as a result of local adaptations (Stockwell & Peterson,

2002). Pooling such ecologically variable populations in a single

model can result in a weak predictive accuracy.

Previous evidence concerning the effect of prevalence on

predictive accuracy is less consistent. Some studies documented

positive effects (Boone & Krohn, 1999; Manel 

 

et al

 

., 2001;

Kadmon 

 

et al

 

., 2003; Berg 

 

et al

 

., 2004), other studies documented

negative effects (Pearce 

 

et al

 

., 2001; Stockwell & Peterson, 2002;

Guisan & Hofer, 2003; Rouget 

 

et al

 

., 2004; Seguardo & Araujo,

2004), in some studies no relationship was found (Brotons 

 

et al

 

.,

2004), and in others the effect of prevalence varied among differ-

ent biological groups (Pearce & Ferrier, 2000). In our analysis the

effect of prevalence on Kappa was not statistically significant

but it should be taken into account that we excluded species with

relatively low prevalence (< 15%) from our analysis. This restric-

tion was adopted following previous results indicating that low

prevalence may lead to statistical bias in estimates of accuracy

based on the Kappa statistic (McPherson 

 

et al

 

., 2004).

Several studies have argued that limited dispersal may prevent

species to occur in areas with suitable ecological conditions

and should therefore reduce the accuracy of predictive maps

produced by species distribution models (Pearson & Dawson,

2003; Peterson, 2003; Hampe, 2004). Based on this hypothesis,

one would expect that predictive maps produced for snails would

be less accurate than those produced for birds and bats, which are

characterized by much higher dispersal ability. Our results do not

support this prediction. Actually, among the three taxa examined

in this study, snails showed the highest values of Kappa for all

modelling algorithms (Fig. 1). One possible explanation for this

result is that snails were characterized by a lower tolerance (average

± SD = 0.52 ± 0.18) than either birds (0.74 ± 0.14) or bats

(0.60 ± 0.26). However, the differences in Kappa among taxa

remained statistically significant even after controlling for the

effect of tolerance (Table 1). Another potential explanation is

that intensive dispersal may blur niche relationships (and thus,

reduce the predictive power of distribution models) by causing

species to occur in unsuitable areas, either temporarily, or for

long time periods as sink populations (Pulliam, 2000). Such ‘over

dispersal’ may deteriorate, rather than enhance, the predictive

power of distribution models. A related mechanism by which

high dispersal ability may deteriorate predictions of species

distribution models is the greater ability of mobile species to

respond to local, short-term fluctuations in the environment.

Such short-term adaptive responses reduce the correlation

between distribution patterns and indices expressing long-term

climatic conditions, and therefore, deteriorate the predictive power

of models based on mean values of rainfall and temperature.

Differences in home range size may have further contributed to

the observed differences in Kappa because species with small

range size (like snails) are more likely to exhibit correlations with

local environmental conditions than species characterized by

large range size (e.g. birds and bats).

The relatively low values of predictive accuracy obtained for

bats suggest that factors other than climate are important in

determining distribution patterns of this group at the spatial

scales examined in this study. One factor that is known to have

considerable effects on patterns of bat distribution and was not

included in our models is lithology, which influences the availability

of caves used as roosting sites (Altringham, 1996). Anthropogenic

disturbances are another factor that had substantial effects on

patterns of bat distribution in Israel during the last decades

(Shalmon, 2002). The main sources of such disturbances are cave

visitations, secondary poisoning, and fumigation of caves against

fruit bats that were considered to be agricultural pests. Yom-Tov

& Mendelssohn (1988) noted that bats are particularly sensitive

to anthropogenic disturbances and estimated that most bats of

the Mediterranean region of Israel do not occupy their potential

distribution ranges because of such disturbances.

 

CONCLUSIONS

 

In spite of considerable differences in the complexity of the

modelling algorithm, the six models examined in this study

showed relatively small (though statistically significant) differ-

ences in predictive accuracy. On the other hand, our results show

that distribution properties of the species may have considerable

effects on predictive accuracy. These findings suggest that properties

of the species may have a greater impact on predictive accuracy

than differences in modelling techniques. Similar results were

reported in studies comparing other modelling techniques (e.g.

Manel 

 

et al

 

., 1999; Elith & Burgman, 2002; Thuiller 

 

et al

 

., 2003;

Berg 

 

et al

 

., 2004). We therefore recommend that future studies

should devote more efforts to the identification of ecological and

geographical factors that influence the accuracy of species distribu-

tion models (e.g. Seguardo & Araujo, 2004). We also recommend

that, in addition to developing more sophisticated modelling

algorithms, future studies should incorporate factors such as

disturbance, dispersal limitation, and biotic interactions, which

are known to affect patterns of species distribution but are usually

ignored in distribution modelling. Several studies have already

taken this approach (Leathwick & Austin, 2001; Anderson 

 

et al

 

.,

2002; Thomas 

 

et al

 

., 2004).
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